SND@LHC neutrino results

Simona Ilieva (Università e INFN Napoli) on behalf of the SND@LHC collaboration

11th Large Hadron Collider Physics Conference
Belgrade, 22-26 May 2023
Neutrino experiments at the LHC

Potential of observing neutrinos at the LHC recognized in the early 90s

- Large neutrino fluxes in forward region from pp collisions
- High ν energy: $E_{\nu} \left[10^2 - 10^3\right]$ GeV, $\sigma_\nu \propto E_{\nu}$
- A small-scale LHC experiment can observe neutrinos of all three types
- Probe $pp \rightarrow \nu X$ in an unexplored energy domain

- Two experiments presently operating
 - FASERν on-axis ($\eta>9$) [T. Boeckh talk]
 - SND@LHC slightly off-axis ($7.2 < \eta < 8.4$)

SND@LHC neutrino results
LHCP 2023
SND@LHC neutrino results

SND@LHC physics programme
SND@LHC TP: LHCC-P-016

- Measure charm production at high η
 - Neutrinos in the detector acceptance are mostly coming from charmed hadrons decay

- ν_e as a probe of forward charm quark production
 - constrain gluon PDF at very low momentum fraction ($x \approx 10^{-6}$)

- Lepton universality test: ν_τ/ν_e and ν_μ/ν_e
 - The detector is designed to distinguish all neutrino flavours

- Measurement of the NC/CC ratio

- Direct search for feebly interacting particles (FIP) through their scattering

Run3: 250fb$^{-1}$

<table>
<thead>
<tr>
<th>Flavour</th>
<th>Neutrinos in acceptance (E) [GeV]</th>
<th>Yield</th>
<th>CC neutrino interactions (E) [GeV]</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ</td>
<td>130</td>
<td>3.0×10^{12}</td>
<td>452</td>
<td>910</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>133</td>
<td>2.6×10^{12}</td>
<td>485</td>
<td>360</td>
</tr>
<tr>
<td>ν_e</td>
<td>339</td>
<td>3.4×10^{11}</td>
<td>760</td>
<td>250</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>363</td>
<td>3.8×10^{11}</td>
<td>680</td>
<td>140</td>
</tr>
<tr>
<td>ν_τ</td>
<td>415</td>
<td>2.4×10^{10}</td>
<td>740</td>
<td>20</td>
</tr>
<tr>
<td>$\bar{\nu}_\tau$</td>
<td>380</td>
<td>2.7×10^{10}</td>
<td>740</td>
<td>10</td>
</tr>
<tr>
<td>TOT</td>
<td>4.0×10^{12}</td>
<td>1690</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the TI18 tunnel
 - former SPS to LEP transfer line
 - ~480m away from ATLAS interaction point (IP1)

Shielded by:
 - ~100m rock
 - LHC magnets deflecting charged particles

Angular acceptance $7.2 < \eta < 8.4$
Detector concept

- Hybrid detector design
- Optimized for the identification of three ν flavours and feebly interacting particles.

- **Veto system**
 - 2 planes of stacked scintillator bars
 - tag charged particles entering the detector volume

- **Vertex detector + EM CAL**
 - Emulsion cloud chambers (emulsion/W)
 - neutrino target mass \sim830kg
 - Scintillating fiber planes

- **HAD CAL + MUON ID SYSTEM**
 - 5+3 plastic scintillator planes interchanged with iron walls

`arXiv:2210.02784`
Using data from SciFi and DS detectors, the muon flux is

- **SciFi**: \(2.06 \times 10^4\) cm\(^{-2}\)/fb\(^{-1}\) area: 31x31cm\(^2\)
- **DS**: \(2.35 \times 10^4\) cm\(^{-2}\)/fb\(^{-1}\) area: 52x52cm\(^2\)
 - Vertical flux gradient
 - 2\% deviation of SciFi and DS fluxes in the same acceptance range (31x31cm\(^2\))
 - while systematic error is 3\%(SciFi) and 5\%(DS) on muon flux per detector
- data/MC simulation agreement level 20-25\%
 - MC sim.: **SciFi**: \(1.60 \times 10^4\) cm\(^{-2}\)/fb\(^{-1}\) area: 31x31cm\(^2\)
 - MC sim.: **DS**: \(1.79 \times 10^4\) cm\(^{-2}\)/fb\(^{-1}\) area: 52x52cm\(^2\)
- Providing feedback to CERN SY-STI team for the FLUKA simulation
 - In return, SND@LHC collaboration is provided with updated simulation samples
Observation of ν_{μ} using electronic detectors

- **Goal**: high-purity sample of ν_{μ} charged current interaction (CC) events

- **Analysis strategy**:
 - Maximise signal/background ratio
 - Background: $\sim 10^9 \mu$ events
 - Strong rejection power needed

- **Dataset**: full 2022 run, 36.8 fb$^{-1}$

- **Signal selection**:
 - **Fiducial volume cut**: reject charged particles entering from the front and sides of the detector
 - Detector activity starts in the 3rd or 4th target wall
 - consistent with a neutral particle interaction
 - probing the ν_{μ}-induced shower already in SciFi
 - Detector activity is constrained in an inner XY detector region, size $25 \times 26 \text{ cm}^2$
 - Efficiency of this cut on simulated neutrino interactions in the target is 7.5%
 - **Neutrino interaction ID**
 - Large hadronic activity in the calorimetric system (SciFi and HCAL)
 - Isolated outgoing muon track reconstructed in the Muon Identification system
 - Hit time consistent with an event originating from the IP1 direction
Background assesment

Muons reaching the detector location

- Not vetoed, generate showers (bremsstrahlung, DIS in the detector) \((a, b)\) – using the data
- Interact in the surrounding material to produce neutral particles which can then mimic neutrino interactions in the target \((c)\) – rely on simulations

\[N_{\text{bkg}}^{\mu} = N_{\mu} \times (1 - \epsilon_{\text{Veto}}) \times (1 - \epsilon_{\text{SciFi1}}) \times (1 - \epsilon_{\text{SciFi2}}) = 3 \times 10^{-3} \]

\[N_{\text{neut}} = N_{\text{neut}} \times P_{\text{inel}} \times \epsilon_{\text{sel}} = (7.6 \pm 3.1) \times 10^{-2} \]

Rec. tracks in SciFi

- Total number of muons in target acceptance
- Veto inefficiency
- SciFi plane inefficiency
deemed negligible

\(\sim 5.0 \times 10^{8}\)
\(\sim 5.3 \times 10^{-12}\)

SND@LHC neutrino results
LHCP 2023

arXiv:2305.09383
- Observed 8 ν_μ CC candidates
- Observation significance 7σ

Side note: hit multiplicity in SciFi discriminates against neutral-hadron background

Display of a ν_μ CC candidate event

SND@LHC neutrino results
LHCP 2023

arXiv:2305.09383
SND@LHC detector is operating since the start of the LHC Run 3
 - has collected 36.8 fb\(^{-1}\) (95% efficiency)

Completed a measurement of the muon flux in the detector

Reporting the observation of incoming \(\nu_\mu\) in the electronics detectors

Observed 8 \(\nu_\mu\) CC candidates against an expected background of \((7.6 \pm 3.1) \times 10^{-2}\)

Observation significance 7\(\sigma\)

Reached the first analysis cornerstone

Started to unveil the physics capacity of the experiment

Exciting studies ahead!
Thank you!
Additional slides
CERN approves new LHC experiment

SND@LHC, or Scattering and Neutrino Detector at the LHC, will be the facility’s ninth experiment.

Experiment timeline

- **Letter of Intent**
 - August 2020

- **SND@LHC**
 - January 2021

- **CERN approves new LHC experiment**
 - March 2021

- **Muon from 13.6 TeV pp collision**
 - 6th July 2022

- **Side view**

Scattering and Neutrino Detector at the LHC

TECHNICAL PROPOSAL

- **Letter of Intent**
 - August 2020

- **SND@LHC**
 - January 2021

- **CERN approves new LHC experiment**
 - March 2021

- **Muon from 13.6 TeV pp collision**
 - 6th July 2022

SND@LHC neutrino results

LHCP 2023
Neutrino events timeline

![Graph showing neutrino events timeline](image)

2022

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMULSION RUN0</td>
<td></td>
</tr>
<tr>
<td>EMULSION RUN1</td>
<td></td>
</tr>
<tr>
<td>EMULSION RUN2</td>
<td></td>
</tr>
<tr>
<td>EMULSION RUN3</td>
<td></td>
</tr>
</tbody>
</table>

Instrumented Target Mass
- EMULSION RUN0: 39 kg
- EMULSION RUN1: 807 kg
- EMULSION RUN2: 784 kg
- EMULSION RUN3: 792 kg

Integrated Luminosity
- EMULSION RUN0: 0.46 fb⁻¹
- EMULSION RUN1: 9.5 fb⁻¹
- EMULSION RUN2: 20.0 fb⁻¹
- EMULSION RUN3: 8.6 fb⁻¹
Emulsion Cloud Chambers
- Goal: tracking and vertex ID
- Sub-micrometric resolution
- Geometry
 - 5 walls of 2x2 bricks
- Shielding (protect from neutrons, stabilise T and humidity)
- Brick layout
 - 60 layers of 300 μm-thick emulsions
 - Interleaved by 1 mm tungsten plates
- Target mass ~830 kg

SciFi
- Goals:
 - Precise timing information (~350 ps time resolution)
 - EM energy measurement
 - Spatial information (<100 μm spatial resolution)
- Geometry
 - 5 planes of scintillating fibres mat pairs (x-y)
 - Mats built of 6 layers of staggered fibres

Hadronic calorimeter
- Goals:
 - Timing information
 - Hadronic energy measurement
 - Spatial information
- Geometry
 - 5 stations of horizontal scintillation bar layers
 - Readout on both ends of a bar

Muon ID system
- Goals:
 - Timing information
 - Muon tracking and isolation
- Geometry
 - 3 stations of orthogonal scintillation bar layer pairs
 - Horizontal bars read out on both ends
 - Vertical bars read out on one end (one additional layer in last station)
Using data from SciFi and DS, the muon flux is

- **SciFi**: 2.06×10^4 cm$^{-2}$/fb$^{-1}$
- **DS**: 2.35×10^4 cm$^{-2}$/fb$^{-1}$

2% deviation of SciFi and DS fluxes in the same acceptance range

- while systematic error is 3%(SciFi) and 5%(DS) on muon flux per detector

- data/MC simulation agreement level 20-25%

Comparison of Emulsions/SciFi distributions with early data in good agreement, preliminary flux measurement agree within 10%

- Input to target replacement strategy definition