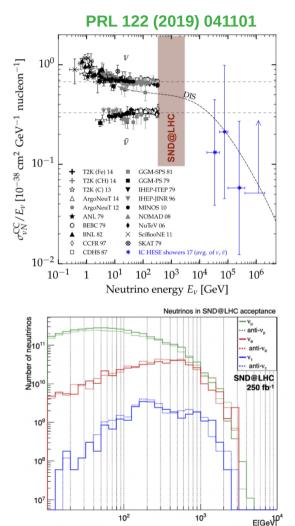


SND@LHC neutrino results

Scattering and Neutrino Detector

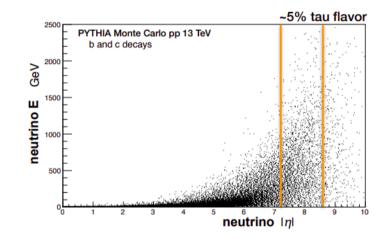
Simona Ilieva (Università e INFN Napoli) on behalf of the SND@LHC collaboration

11th Large Hadron Collider Physics Conference Belgrade, 22-26 May 2023


ND.IRON.5

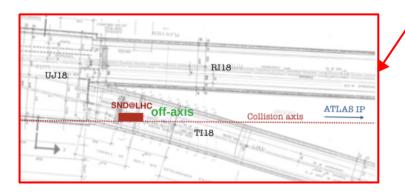
Neutrino experiments at the LHC

Potential of observing neutrinos at the LHC recognized in the early 90s

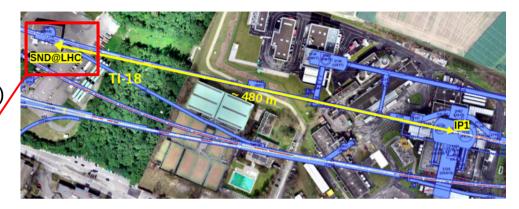

- Large neutrino fluxes in forward region from pp collisions
- High ν energy: E $_{\nu}$ [10² 10³] GeV, σ_{ν}^{α} E $_{\nu}$
- A small-scale LHC experiment can observe neutrinos of all three types
- Probe $pp \rightarrow \nu X$ in an unexplored energy domain
- Two experiments presently operating
 - FASERν on-axis (η>9) [T. Boeckh talk]
 - SND@LHC slightly off-axis (7.2 <η< 8.4)

SND@LHC physics programme SND@LHC TP: LHCC-P-016

- Measure charm production at high η
 - Neutrinos in the detector acceptance are mostly coming from charmed hadrons decay
 J. Phys. G: Nucl. Part. Phys. 47 125004
- v_e as a probe of forward charm quark production
 - constrain gluon PDF at very low momentum fraction (x~10⁻⁶)
- Lepton universality test: v_{τ}/v_{e} and v_{μ}/v_{e}
 - The detector is designed to distinguish all neutrino flavours
- Measurement of the NC/CC ratio
- Direct search for feebly interacting particles (FIP) through their scattering


Run3:	250fb ⁻¹
-------	---------------------

Flavour	Neutrinos in $\langle E \rangle$ [GeV]	n acceptance Yield	$\langle CC neutrino \\ \langle E \rangle [GeV]$	interactions Yield
ν_{μ}	130	$3.0 imes 10^{12}$	452	910
$\bar{\nu}_{\mu}$	133	2.6×10^{12}	485	360
ν_e	339	$3.4 imes 10^{11}$	760	250
$\bar{ u}_e$	363	$3.8 imes 10^{11}$	680	140
$\nu_{ au}$	415	$2.4 imes 10^{10}$	740	20
$\bar{ u}_{ au}$	380	$2.7 imes 10^{10}$	740	10
TOT		4.0×10^{12}		1690



- In the TI18 tunnel
 - former SPS to LEP transfer line
- ~ 480m away from ATLAS interaction point(IP1)

- Shielded by:
 - ~ 100m rock
 - LHC magnets deflecting charged particles
- Angular acceptance $7.2 < \eta < 8.4$

Machine to IP1(left) - SND@LHC in TI18(right)

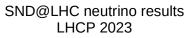
0

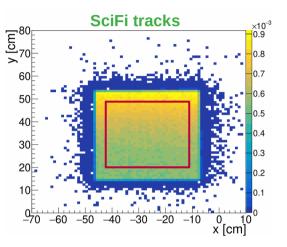
Detector concept

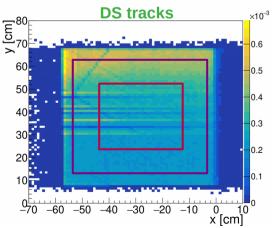
- Hybrid detector design
- Optimized for the identification of three v flavours and feebly interacting particles.
- Veto system

arXiv:2210.02784

5x SciFi 5x Upstream 3x Downstream 2 planes of stacked scintillator bars planes planes planes tag charged particles entering the detector volume 2,6 m 5x Emulsion/W Vertex detector + EM CAL walls Emulsion cloud chambers(emulsion/W) 0 neutrino target mass ~830kg 0 Scintillating fiber planes 0 2x Veto planes HAD CAL + MUON ID SYSTEM REDEED ν_{ℓ}, ν_{ℓ} 5+3 plastic scintillator planes 0 interchanged with iron walls 1,0 m S HADRONIC CALORIMETER VERTEX DETECTOR AND AND MUON SYSTEM ELECTROMAGNETIC CALORIMETER ~40 Xo ~10 **λ** SND@LHC neutrino results

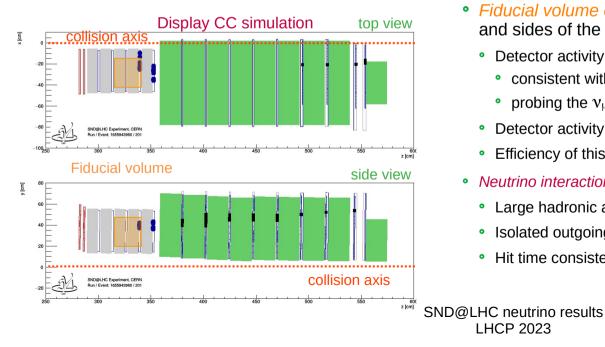



0


Muon flux

SNDLHC-NOTE-2023-001

- Using data from SciFi and DS detectors, the muon flux is
 - SciFi: 2.06×10⁴ cm⁻²/fb⁻¹ area: 31x31cm²
 - **DS**: 2.35×10⁴ cm⁻²/fb⁻¹ area: 52x52cm²
 - Vertical flux gradient
 - 2% deviation of SciFi and DS fluxes in the same acceptance range (31x31cm²)
 - while systematic error is 3%(SciFi) and 5%(DS) on muon flux per detector
 - data/MC simulation agreement level 20-25%
 - MC sim.: SciFi: 1.60×10⁴ cm⁻²/fb⁻¹ area: 31x31cm²
 - MC sim.: **DS**: 1.79×10⁴ cm⁻²/fb⁻¹ area: 52x52cm²
 - Providing feedback to CERN SY-STI team for the FLUKA simulation
 - In return, SND@LHC collaboration is provided with updated simulation samples



Observation of v_{\mu} using electronic detectors

- at the LHC <u>Goal</u>: high-purity sample of v_{μ} charged current interaction (CC) events
 - Analysis strategy: 0
 - Maximase signal/background ratio
 - Background: ~10⁹ µ events
 - Strong rejection power needed
 - Dataset: full 2022 run, 36.8 fb-1 0

- Signal selection: 0
 - Fiducial volume cut : reject charged particles entering from the front and sides of the detector

SIGNAL

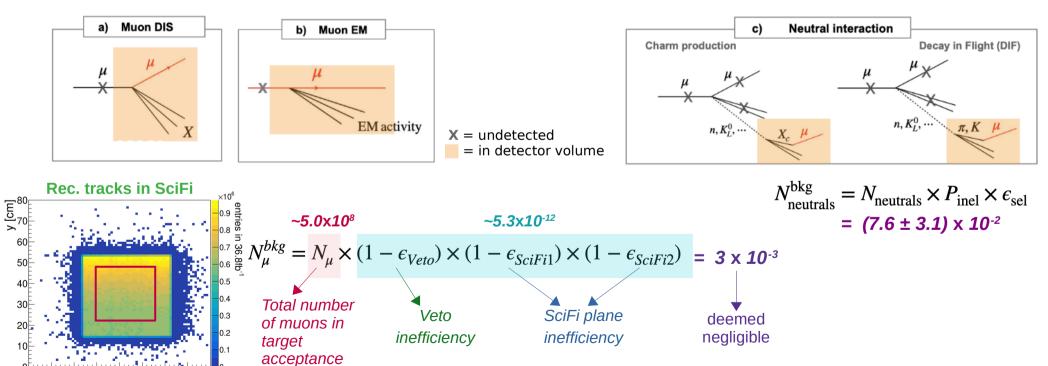
- Detector activity starts in the 3rd or 4th target wall
 - consistent with a neutral particle interaction 0
 - probing the v_{μ} -induced shower already in SciFi 0
- Detector activity is constrained in an inner XY detector region, size 25×26 cm²
- Efficiency of this cut on simulated neutrino interactions in the target is 7.5%
- Neutrino interaction ID

LHCP 2023

- Large hadronic activity in the calorimetric system (SciFi and HCAL)
- Isolated outgoing muon track reconstructed in the Muon Identification system
- Hit time consistent with an event originating from the IP1 direction

arXiv:2305.09383

-30 -20

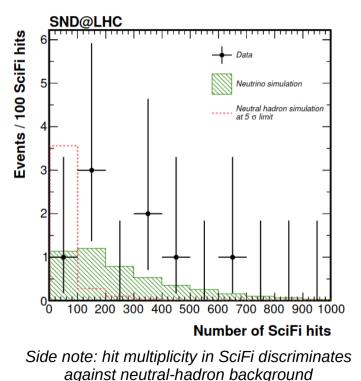

SNDI HC-NOTE-2023-00

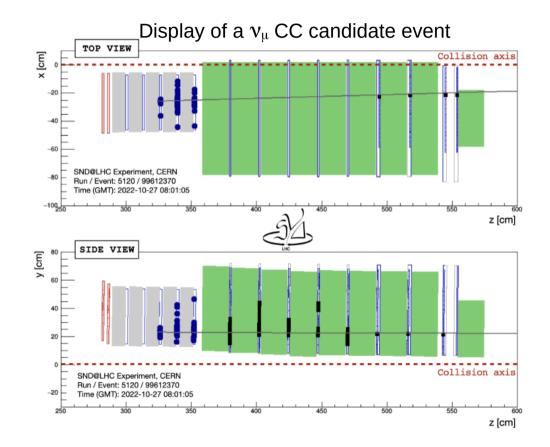
Icm

Background assesment

arXiv:2305.09383

- Muons reaching the detector location
 - Not vetoed, generate showers(bremsstrahlung, DIS in the detector) (a,b) using the data
 - Interact in the surrounding material to produce neutral particles which can then mimic neutrino interactions in the target **(c)** rely on simulations





Observation of v_{μ} using electronic detectors

arXiv:2305.09383

- Observed 8 ν_{μ} CC candidates
- Observation significance 7σ

SND@LHC neutrino results LHCP 2023

- SND@LHC detector is operating since the start of the LHC Run 3
 - has collected 36.8 fb⁻¹ (95% efficiency)
- Completed a measurement of the muon flux in the detector
- Reporting the observation of incoming v_{μ} in the electronics detectors
- Observed 8 ν_{μ} CC candidates against an expected background of (7.6 ± 3.1)×10⁻²
- Observation significance 7σ
- Reached the first analysis cornerstone
- Started to unveil the physics capacity of the experiment

Exciting studies ahead!

A THE C |

Thank you!

SND@LHC neutrino results LHCP 2023

Additional slides

SND@LHC neutrino results LHCP 2023

Experiment timeline

Scattering and Neutrino Detector at the LHC

TECHNICAL PROPOSAL

Letter of Intent

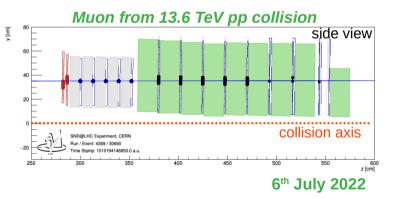
SND@LHC

August 2020

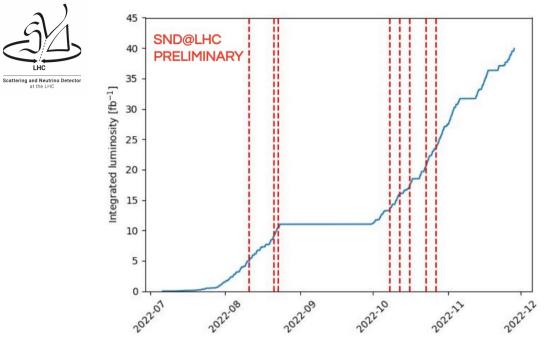
January 2021

CERN approves new LHC experiment

SND@LHC, or Scattering and Neutrino Detector at the LHC, will be the facility's ninth experiment

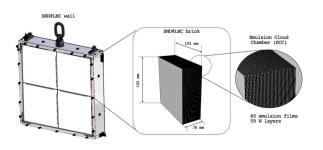

March 2021

September 2021



December 2021

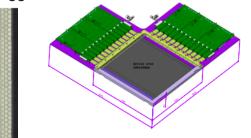
March 2022


Neutrino events timeline

Start beam o					missioning	First stable	ble beams @6.8TeV				End of i	run		
2022	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	INSTRUMENTED TARGET MASS	INTEGRATED LUMINOSITY
EMULSION RUN0							•						39 kg	0.46 fb ⁻¹
EMULSION RUN1								1					807 kg	9.5 fb ⁻¹
EMULSION RUN2										1			784 kg	20.0 fb ⁻¹
EMULSION RUN3													792 kg	8.6 fb ⁻¹

Emulsion Cloud Chambers

- Goal: tracking and vertex ID
- Sub-micrometric resolution
- Geometry
 - 5 walls of 2x2 bricks
- Shielding(protect from neutrons, stabilise T and humidity)
- Brick layout
 - 60 layers of 300 µmthick emulsions
 - Interleaved by 1 mm tungsten plates
- Target mass ~830 kg


<u>SciFi</u>

Goals:

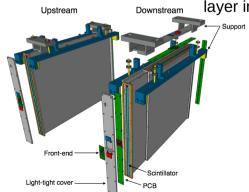
0

0

- Precise timing information (~350 ps time resolution)
- EM energy measurement
- Spatial information (<100 µm spatial resolution)
- Geometry
 - 5 planes of scintillating fibres mat pairs (x-y)
 - Mats built of 6 layers of staggered fibres

SND@LHC neutrino results LHCP 2023

Hadronic calorimeter


- Goals:
 - Timing information
 - Hadronic energy measurement
 - Spatial information
- Geometry
 - 5 stations of horizontal scintillation bar layers
 - Readout on both ends of a bar

Muon ID system

Goals:

Detector components


- Timing information
- Muon tracking and isolation
- Geometry
 - 3 stations of orthogonal scintillation bar layer pairs
 - Horizontal bars read out on both ends
 - Vertical bars read out on one end (one additional layer in last station)

Using data from SciFi and DS, the muon flux is

- SciFi: 2 06×104 cm-2/fb-1 **DS** 2 35×104 cm⁻²/fb⁻¹ 0 SNDLHC-NOTE-2023-001
- 2% deviation of SciFi and DS fluxes in the same acceptance range 0
 - while systematic error is 3%(SciFi) and 5%(DS) on muon flux per detector
- data/MC simulation agreement level 20-25% 0
- Comparison of Emulsions/SciFi distributions with early data in good agreement, preliminary flux measurement agree within 10%
 - Input to target replacement strategy definition 0

LHCP 2023

Muon flux