

FASER Neutrino Results

LHCP Conference, 22 - 26 May 2023, Belgrade Tobias Böckh on behalf of the FASER collaboration

Collider Neutrinos

- Observed neutrinos from a variety of sources: nuclear reactors, beam dump experiments, cosmic rays, Sun, earth, supernovae, …
- Neutrinos produced copiously at hadron colliders, but no direct observation yet!
 - Neutrinos interact extremely weakly
 - Highest energy neutrinos produced in forward direction (parallel to beamline)
- Energy spectrum complementary to existing neutrino experiments

The ForwArd Search ExpeRiment

- FASER is a new, small experiment at the LHC
 - $\circ~$ Constructed and installed in 2019 2021
- Located 480 m downstream of ATLAS interaction point on collision axis line of sight
 LHC magnets and 100 m of rock shield most backgrounds
- Targets long-lived BSM particles: A', ALPs, ... (talk from Noshin Tarannum) and neutrinos (this talk)
- Successfully operated during all of 2022, restarted data taking in April 2023
 - All detector components perform excellently
 - $\circ~$ Recorded 37.0 fb⁻¹ of data in 2022 (96 % of delivered luminosity)
- Possible Future Upgrade: FASER2 at the proposed Forward Physics Facility

(talk from Roshan Mammen Abraham)

FASER Detector

arxiv:2207.11427

Neutrino Signature in Electronic Detector

arxiv:2207.11427

Aperture: 20 cm Length: 7 m

Front Scintillator

veto system

Detect CC v_{μ} interactions using spectrometer and scintillators

Electronic Neutrino analysis:

- Use FASER $\tilde{\nu}$ only as target for neutrino interactions
- Signature:

Electromagnetic 🛒 Calorimeter

- Collision event timing and good data quality
- No signal (<40 pc) in 2 front scintillators

Trigger / pre-shower

scintillator system

- Signal (>40 pC) in all scintillators downstream of decay volume
- Exactly 1 good fiducial track (p > 100 GeV, r < 120 mm at front veto, ...) Tracking spectrometer stations

Magnets

0.57 T dipole magnet

Scintillator veto system

> **FASER**v emulsion detector

FASER*v* analysis:

- 730 layers of 1.1 mm thick tungsten plates and emulsion films, 1.1 tones tungsten target
- Excellent position and angular resolution
- Reconstruct tracks and vertices of charged current (CC) and neutral current (NC) interactions of all neutrino flavors
- Analysis still ongoing

Background Estimate

with E > 100 GeV

0

- Estimated from events with just one veto scintillator firing
- Expect $(3.7\pm2.5) \times 10^{-7}$ events

Most hadrons absorbed in tungsten


```
(90 < r < 95 \text{ mm}, \# \text{ clusters} \le 8)
```

• Expect 0.08 ± 1.83 events

Neutrino Observation

- Based on GENIE simulation expect 151 ± 41 neutrino events
 - $\circ~$ Uncertainty from difference between DPMJET and SIBYLL event generators
 - $\circ~$ No experimental uncertainties \rightarrow cannot translate to cross section / flux yet
- Observe 153 events with no veto signal with an expected background of 0.2 ± 1.8
- First direct observation of collider neutrinos!
 - $\circ~$ Signal significance of 16 σ
 - Recently accepted by PRL

8

Neutrino Characteristics

- Neutrino events match expectations from simulation
 - \circ Most events at high momentum (E_u > 200 GeV)
 - More $v_{\rm u}$ than $\overline{v_{\rm u}}$
 - High occupancy in front tracker station
 - $\circ~$ Large angle θ with respect to line-of-sight
- No experimental uncertainties included in these plots!

Neutrinos in FASERv

- Analysis of emulsion detector still ongoing
- Have multiple candidates, including highly v_e like, high energy event:

Summary

- Observed 153 v, CC interactions with electronic detectors
 - Many neutrinos with large momentum (E_{μ} > 200 GeV)
 - $\circ~$ Charge indicates neutrinos and anti-neutrinos
 - First direct observation of collider neutrinos!
- Neutrino candidates from FASERv emulsion detector
- Plan to measure neutrino cross section and flux in future
- FASER operating well for start of the 2023 LHC run
- Up to an order of magnitude more data expected during LHC Run 3

Additional Slides

Acknowledgments

• FASER is supported by:

- $\circ~$ LHC for the excellent performance in 2022
- ATLAS Collaboration for providing luminosity information
- ATLAS SCT Collaboration for spare tracker modules
- ATLAS for the use of their ATHENA software framework
- LHCb Collaboration for spare ECAL modules
- CERN FLUKA team for background simulation
- CERN PBC and technical infrastructure groups for excellent support during design, construction and installation

erc

CERN

FASER Detector

arxiv:2207.11427

Detector installed between March - Nov 2021, ready for LHC run 3

11 21

ATLAS

FASERnu

50

2

21

ectrometer

CANER OF

Neutrino Analysis

- Count number of events with hits in none, one or both front veto layers • n0: both scintillator layers have charge < 40 pC, signal, geom and hadronic background \circ n10, n01: only one of the two scintillators layers has charge > 40 pC, veto inefficiency background \circ n2: both scintillators layers have charge > 40 pC, background dominated
- Likelihood function is product of 4 Poisson terms for observables n, and 3 Gaussian constraint terms for background:

Maximum likelihood fit gives 153 signal candidates

Physics Potential

- Study neutrino interactions at high energy
- Search for BSM physics in neutrino production, propagation and interaction
- Study PDFs by Deep Inelastic Scattering (DIS) of neutrino in the target
- Study forward hadron production via neutrino flux measurements (forward charm from high energy $v_{\rm e}$)

Event Display

Detector Performance: Emulsion

- Track multiplicity measured in initial emulsion
 - Consistent with FLUKA simulation
- Excellent hit resolution (< 0.2 µm) after layer alignment

Emulsion film Tungsten plate (1 mm thick) (25 cm x 25 cm)

Detector Performance: Trigger + DAQ

- DAQ running smoothly up to 1.3 kHz with deadtime only 1.3%
- Total trigger rate falls off faster than luminosity during run (higher beam-induced backgrounds) but coincidence trigger rate flat with respect to luminosity

Detector Performance: Veto Scintillators

- All veto scintillator layers have inefficiencies $< 2 \times 10^{-5}$
- Efficiencies measured by extrapolating tracks triggered in timing scintillator to layer, no requirement on other scintillator layers

Detector Performance: Tracker

- Tracker fully timed in with respect to LHC clock
- Hit efficiency of 99.64 % at 150 V bias and 1 fC threshold

• Hit efficiency of 99.64 % at 150 V bias and 1 fC threshold

Detector Performance: Alignment

• Tracker modules aligned using local iterative χ^2 method

Validated using simulation with misalignments

- Currently only aligning two most sensitive parameters (vertical shift, in-plane rotation)
- Aligned resolution close to ideal geometry simulation

FASER Collaboration

• 87 members across 24 institutes from 10 countries

