

Online reconstruction and Trigger

Marianna Fontana, on behalf of the LHC collaborations

INFN bologna

LHCP 2023 - 23/05/2023 Belgrade - Serbia

Introduction

- The reconstruction of raw detector data and its processing in real time represents a major challenge in HEP
- Demands for higher throughputs in upcoming years
- Two demands for Trigger:
 - Decrease throughput to backend DAQ
 - Keep trigger efficiency high
- Two trends:
 - Triggerless/continuous readout (ALICE-LHCb)
 - Higher-level reconstruction in hardware trigger (ATLAS-CMS)

https://hilumilhc.web.cern.ch

This presentation is in no way an exhaustive view of all LHC experiments trigger systems, rather a selection of some topic biased from my view

Disclaimer

The ATLAS Run 3 trigger

Trigger system consists of Level-1 (hardware) and High Level Trigger (software):

- reduce data rate from ~ 40 MHz to O(1 kHz)
- L1 improvements: data from calorimeters and muon ۲ detectors processed by dedicated trigger systems with expected improved efficiency
 - L0Calo and L0Muon
- Highly selective triggering with strong channel dependence (~50% central Z -> ee, ~50% central HH->4b)
- High trigger thresholds for hadronic jets -> focus on new physics at high masses
- Online reconstructs partial or full event to offline-like quality
- CPU and readout limited at high beam intensities •
- HLT software framework fully redesigned to be **multi-**• threaded compliant
- No accelerated computing for Run 3, but lots of • R&D for HL-LHC.

Luminosity

01:00

03:00

05:00

07:00

09:00

11:00

13:00

ت ن Luminosity [cm⁻²cm⁻¹]

0.5

15:00

Hadronic

BLS

Other Express

The ATLAS HLT improvements

- Inner Detector Trigger MinBias tracking in 900GeV collisions
 - The 4(6)GeV track-triggers have an unbiased tracking spectra below 4(6)GeV & very high efficiency
- Improvements to the offline large radius tracking (LRT) allow it to be used online in the trigger to target signatures with long lived particles
 - LRT outperforms standard tracking decision
- Improved jet and b-jet performance
 - b-jet efficiency of the new DIPS and DL1d algorithms outperforms the benchmark DL1r algorithm
 - Improved GN1 tagger [see poster by M. Chen]

The CMS Run 3 trigger

Two level triggering system to reduce the rate to a manageable level

- L1 (< 100 kHz): large effort to develop new seed features, algorithms, and triggers to target LLP signatures and rare signals
- HLT (~ 1 kHz)
 - New tracking based on the optimized pixel track (= Patatrack) reconstruction
 - it allows to reduce the HLT tracking to a single-iteration approach
 - Improved tagging capabilities of low-level calorimeter objects + new L2 τ reconstruction using pixel tracks
 - New muon reconstruction and ML-based inside-out and outside-in seeding
 - **Improved performance of jets** reconstructed with Patatrack pixel tracks as inputs to the Particle Flow (PF) algorithm

CMS-DP-2022-014

CMS HLT: a new CPU + GPU farm

Software based trigger with full event information available running on CPU + GPU based farm

- Run 3 HLT farm composed of 200 nodes (25600 CPU cores and 400 GPUs)
 - Each node equipped with two AMD Milan 64-core CPUs and two NVIDIA Tesla T4 GPUs
- Increasing usage of GPUs at Run 3
 - Offloading 30% of the HLT reconstruction to GPU
- GPU reconstruction implemented and fully commissioned
 - calorimeter and pixel local reconstruction + pixel tracking + vertex reconstruction
 - The execution time per event of was reduced by ~40%
- HLT throughput requirement ~500Hz:
 - Throughput increases by a factor of ~1.80
 - Power Consumption (per throughput) reduced by ~30%

CMS *Preliminary* 13.6 TeV

The ALICE Run 3

Challenges for Run 3:

- Completely new detector readout and substantial detector upgrades: new ITS, MFT, FIT. New GEM for TPC readout
- ~100 x more data than Run 2
- Many important physics signals have very small signal-to-noise ratio
- Triggering (selection) techniques very inefficient if not impossible
- Needs large statistics
 - Read the data resulting from all interactions (LHC will deliver min bias Pb-Pb collisions at 50 kHz)

...to 50 kHz of continuous readout data in (Pb-Pb) Run 3.

Courtesy of G. Eulisse

Reconstruction using GPUs in ALICE

- Trigger-less acquisition: continuous detector read-out
 - L_{int} >10 nb⁻¹ of PbPb data at 50kHz: 50x more than Run 2
- Reconstruction is two-stepped
 - **Synchronous phase** (beam circulating): for calibration and data compression
 - Asynchronous phase (no beam): full processing of data staged on a temporary buffer. One common online-offline system (O²)
- ALICE uses GPUs to accelerate the process
 - TPC track reconstruction is the most time consuming during synchronous reconstruction and is therefore performed on GPUs (the most cost effective solution)
 - During the asynchronous reconstruction, the fraction of available GPU increases
 - Use those resources efficiently by offloading also ITS reconstruction there

Courtesy of V. Barroso

The LHCb experiment

- Major upgrade of all subtectors: $\mathscr{L} = 2 \times 10^{33} \ cm^{-2} \ s^{-1}$
- 100% of the readout electronics replaced
- New data acquisition system and data center

- Cannot effectively trigger on heavy flavour using hardware signatures
- Trigger for many hadronic channels saturated already at Run 1-2 luminosity
- Solution: fully software trigger

The LHCb data flow

LHCB-FIGURE-2020-016

- Detector data @30 MHz received by O(500) FPGAs
- 2-stage software trigger, HLT1 & HLT2
- Real-time alignment & calibration
- After HLT2, 10 GB/s of data for offline processing

LHCb HLT1 trigger

The goal of HLT1

- Be able to intake the entirety of the LHCb raw data (5 TB/s) at 30 MHz
- Perform partial event reconstruction & coarse selection of broad LHCb physics cases
- Reduce the input rate by a factor of 30 (~1 MHz)
- 30 MHz benchmark can be achieved with O(200) GPUs (max number EB can host is 500)
- ~ 350 GPUs now installed -> Additional functionalities are being explored
- Throughput scales well with theoretical TFLOPs of GPU card

LHCb-FIGURE-2020-014

LHCb-FIGURE-2023-009

First complete high-throughput GPU trigger for a HEP experiment!

LHCb real-time alignment&calibration

- Store data selected in HLT1 in intermediate buffer for real-time alignment and calibration
- Fully aligned and calibrated data needed before running HLT2
- Online alignment and calibration pioneered in Run 2, crucial in Run 3
- Buffer capacity of O(10 PB) situated between HLT1 and HLT2
- Two types of processes
 - Alignment: VELO, RICH mirrors, UT, SciFi, Muon
 - Calibration: RICH, ECAL, HCAL

LHCb-FIGURE-2022-016

LHCb HLT2 trigger

- Given the hard limit on bandwidth and expected signal rate, event size is the only free parameter
- Instead of saving full event, only information needed for a physics analysis can be stored (Turbo paradigm)
- Successful hybrid strategy for Run 2 [J. Phys.: Conf. Ser. 664 082004]
- Significant reduction of data size \Rightarrow more events at same bandwidth
- Preliminary signals from 2022 are very encouraging!

Persistence method	Average event size [kB]
Turbo	O(10)
Turbo++/SP	O(10-100)
Raw event	O(100)

Towards the future

Trigger & data acquisition challenge for HL-LHC

- Luminosity: ATLAS/CMS $(2 \rightarrow 7.5) \times 10^{34} \ cm^{-2} \ s^{-1}$ LHCb $(2 \times 10^{33} \rightarrow 1.5 \times 10^{34}) \ cm^{-2} \ s^{-1}$
- Pileup: ATLAS/CMS $60 \rightarrow 200$

LHCb $5 \rightarrow 40$

CMS phase II upgrade of Level 1 trigger

- The Particle Flow used for offline will be brought to L1 trigger
- Include tracking trigger in L1 trigger system
- Displaced vertex trigger for exotic events

ATLAS L0 trigger for HL-LHC

- HLT-like object-level and event-level reconstruction and analysis at 40 MHz
- Collect all trigger data from a single event onto one FPGA

LHCb planning Upgrade II for LS4

- FTDR approved in March 22 [LHCB-TDR-023]
- Exciting challenges in trigger and DAQ
- 4D reconstruction: timing added to tracking to better isolate signals
- Actively considering which processors will work best

Thanks for you attention!

Backup

The ATLAS Trigger Level analysis

- Trigger bandwidth limitations: bandwidth = trigger rate × event size
- Trigger-Level Analysis (TLA): save only the HLT reconstructed objects (e.g. CMS Data Scouting (i), LHCb Turbo Stream (ii))
- Substantial event size reductions
 - (1.5MB (standard) vs. ~5kB (TLA))
 - Higher rate triggers
 - Small bandwidth footprint (right, (b))

Trigger-Level Analyses require excellent performance of trigger physics objects

Time [day h]

Time [day h]

The CMS Run 3 trigger

- Two level triggering system to reduce the rate to a manageable level
 - L1 (< 100 kHz): large effort to develop new seed features, algorithms, and triggers to target LLP signatures and rare signals

Upgraded LHCb online system

Event filter second pass (up to 4000 servers)

Event builder farm equipped with 173 servers

Each server has 3 free PCIe slots

- can host GPUs
- sufficient cooling and power
- advantageous to have GPUs as selfcontained processors
- sending data to GPUs is like sending data to network card
- GPUs map well into LHCb DAQ architecture
- HLT1 tasks inherently parallelizable
- Smaller network between EB & CPU HLT
- Cheaper & more scalable than CPU alternative
- Implemented with 326 Nvidia RTX A5000 GPUs

LHCb HLT1 sequence

Tracking relies on

Raw data

- VELO: clustering, tracking, vertex reconstruction
- UT: tracking, momentum estimate, fake rejection
- SciFi: tracking, momentum measurement

PID from MUON and CALO systems

LHCb Track reconstruction

Journal of Computational Science, vol. 54, 2021

Velo tracking

- 26 silicon pixel modules with $\sigma_{x,y} \sim 5 \ \mu m$
- Local paralleled clustering algorithm (Search by Triplet)
- Tracks fitted with simple Kalman filter assuming straight line model

UT tracking

- 4 layers of silicon strips
- Velo tracks extrapolated to UT taking into account B field
- Parallelized trackless finding inside search window requiring at least 3 hits

Comput. Softw. Big Sci 4, 7 (2020)

SciFi tracking

- 3 stations with 4 layers of Scintillating Fibres
- Velo-UT tracks extrapolated using parametrisation
- Parallelized Forward algorithm to reconstruct long tracks
 - Search windows from Velo-UT momentum estimate
 - From triplets and extend to remaining layers •

LHCb Tracking performance

- Run 2 performance maintained at x5 instantaneous luminosity
 - Excellent track reconstruction efficiency (> 99% for VELO, 95% for high-p forward tracks)
 - Good momentum resolution and fake rejection

LHCb-FIGURE-2020-014

LHCb Tracking without the UT

- In 2022, the UT detector is unfortunately not be available for data-taking
- Tracking performance and throughput maintained, at the cost of larger fake rate
- Commissioning two options, which **both maintain the current throughput**

1. Forward without UT

- Extrapolate VELO track as a straight line, make two windows - assuming positive/negative charge
- Assume p > 5 GeV, $p_T > 1$ GeV (low-p tracks get bent out of the SciFi acceptance anyway)

3000

2000

1000

LHCB-FIGURE-2022-007

LHCb Tracking without the UT

- In 2022, the UT detector is unfortunately not be available for data-taking
- Tracking performance and throughput maintained, at the cost of larger fake rate
- Commissioning two options, which **both maintain the current throughput**

2. Seeding+matching

- Standalone SciFi reconstruction & matching to VELO seeds
- Highly efficient for low momenta
- Opens the door to additional physics cases in HLT1 (downstream and SciFi tracks)

LHCB-FIGURE-2022-010

LHCb Tracking without the UT

- In 2022, the UT detector will unfortunately not be available for data-taking
- Tracking performance and throughput maintained, at the cost of larger fake rate
- Opportunity to commission 2 options, which **both maintain the current throughput**

LHCB-FIGURE-2022-010

LHCb Vertex reconstruction

- Primary vertices found from clusters in the closest approach of tracks to the beamline
- 1-1 mapping between tracks and vertices requires serialization
 - Instead, every track assigned to every vertex based on weight
- Efficiency > 90% for vertices with number tracks > 10

Comput. Softw. Big Sci. 6 (2022) no.1, 1

LHCb Calorimeter and muon PID

CALO reconstruction

- Loop over calorimeter cells and look for energetic clusters
- Originally not foreseen within the baseline TDR, but outcome of ambition and good design (and lots of optimisation)
- The very first algorithm that was tested with real Run 3 data!

LHCb Calorimeter reconstruction

CALO reconstruction

- Probability density Loop over calorimeter cells and look for energetic clusters
- Originally not foreseen within the baseline TDR, but outcome of ambition and good design (and lots of optimisation)
- The very first algorithm that was tested with real Run 3 data!

LHCb simulation electrons from $B^0 \rightarrow K^{*0} e^+ e^-$ ----- charged hadrons 0 0.5 1.5 ()

EcalE /pc of track

LHCB-FIGURE-2021-003

- Calo digits attached to long tracks for electrons
- Momentum is corrected if clusters are found in the Bremsstrahlung recovery area

LHCb Muon PID

- Muon particle identification
 - Extrapolate tracks from SciFi to Muon stations
 - Match hits to tracks in a field of interest
 - Excellent muon identification and misID background rejection

LHCB-FIGURE-2020-014

LHCb HLT1 selection performance

- Inclusive rate for the main HLT1 lines ~ 1 MHz
- O(30) lines implemented so far:
 - Cover majority of LHCb physics programme (B, D decays, semileptonic, EW physics)
 - Special lines for monitoring, alignment and calibration

Comput. Softw. Big Sci. 6 (2022) no.1, 1

Allen: a GPU HLT1 LHCb trigger platform

- Public software project: gitlab repo
- Supports three modes:
 - Standalone
 - Compiling within the LHCb framework for dat acquisition
 - Compiling within the LHCb framework for simulation and offline studies
- Runs on CPU, Nvidia GPU (CUDA, CUDACLANG), AMD GPUs (HIP)
- GPU code written in CUDA
- Cross-architecture compatibility (HIP, CPU) via macros

Allen

Welcome to Allen, a project providing a full HLT1 realization on GPU.

Documentation can be found here.

Mattermost discussion channels

- Allen developers Channel for any Allen algorithm development discussion.
- Allen core Discussion of Allen core features.
- AllenPR throughput Throughput reports from nightlies and MRs.

Performance monitoring

- Allen throughput evolution over time in grafana
- Allen dashboard with physics performance over time

Edit on GitLab

Welcome to Allen's documentation!

Welcome to Allen's documentation!

Allen is the LHCb high-level trigger 1 (HLT1) application on graphics processing units (GPUs). It is responsible for filtering an input rate of 30 million collisions per second down to an output rate of around 1-2 MHz. It does this by performing fast track reconstruction and selecting pp collision events based on one- and two-track objects entirely on GPUs.

This site documents various aspects of Allen.

LHCb HLT1 CPU/GPU comparison

Compatible performance between CPU and GPU!

Comput. Softw. Big Sci. 6 (2022) no.1,

LHCb HLT1 CPU/GPU comparison

