Higgs boson fiducial differential cross section measurements at ATLAS

Roberto Di Nardo1

on behalf of the ATLAS Collaboration

1Università and INFN Roma Tre

LHCP2023

22–26 May 2023. Belgrade, Serbia
Fiducial differential cross section measurements

- The fiducial phase space is defined to minimize the extrapolation effects and mimic the detector & analysis acceptance.
- Most model independent way to study the properties of the Higgs boson.
- Downside: reduced sensitivity for BSM effects compared to dedicated analyses.
- Observable sensitive to: Higgs boson production kinematics, associated jet kinematics, decay kinematics e.g. to probe spin-CP of the Higgs boson.
Together with $H\rightarrow\gamma\gamma$ perfect channel to measure differential XS for several observables sensitive to the Higgs boson production and decay.

Final state can be fully reconstructed: SF-OC lepton (e,\(\mu\)) pairs.

~1-2% mass resolution, inclusive S/B ~2.

Likelihood Unfolding via inversion of detector response matrix.

Several observables measured — Measurements in agreement with SM predictions.

As an example, m_{12} vs m_{34} and its interpretation within the Pseudo Observable framework.

Constraints on flavour-universal contact terms interactions.
Fiducial and differential XS in $H \rightarrow ZZ^* \rightarrow 4l$

- Fiducial cross section measured in a VBF enriched region

![Plot 1](Image1)

| $\Delta \eta_{jj}$ vs m_{jj} |
\begin{itemize}
 \item 59.3% VBF
 \item 37.5% ggF
 \item 1.7% VH
 \item 1.5% ttH
\end{itemize}

![Plot 2](Image2)

- Good agreement with SM predictions found
- In VBF enriched bin with $m_{jj} \geq 400\,\text{GeV}$ and $|\Delta \eta_{jj}| > 3$:
 \begin{align*}
 \text{(Obs)} & \quad 0.215^{+0.077}_{-0.064} \, \text{fb} \\
 \text{(exp)} & \quad 0.134^{+0.065}_{-0.053} \, \text{fb}
 \end{align*}

\begin{itemize}
 \item $\sim 36\%$ uncertainty dominated by the data statistics
\end{itemize}
• Very clean signature with two isolated photons
• Main background from the $\gamma\gamma$ continuum, signal extraction with a fit to $m_{\gamma\gamma}$
• Matrix unfolding implemented in the likelihood fit
• Inclusive fiducial cross section:

$\langle \text{obs} \rangle \sigma_{\text{fid}} = 67 \pm 5 \text{(stat)} \pm 4 \text{ (sys)} \text{ fb}$ \hspace{1cm} (SM) $\sigma_{\text{fid}} = 64 \pm 4 \text{ fb}$

• Differential cross sections measured in the inclusive fiducial phase space and in a VBF-enriched fiducial region

χ^2 compatibility between the measured cross sections and SM predictions (default MC) ranges from 27% to 95%
Fiducial and differential XS in $H \to \gamma \gamma$

- Differential fiducial cross section measured for 5 observables used to constrain possible BSM effects in the Higgs boson interactions within the effective field theory framework

 - SM Lagrangian complemented with additional CP-even and CP-odd dim-6 operators in the SMEFT Warsaw basis

 - Variables: $p_T^{\gamma\gamma}$, N_j, m_{jj}, $\Delta \phi_{jj}$, $p_T^{j_1}$ with the correlation among the observables properly considered

- Limits set on SMEFT Wilson coefficients both using SM with dimension-6 operators interference-only terms and including the quadratic (dim-6) terms

ATLAS

SM EFT (interference only), $\Lambda = 1$ TeV

- c_{Kg} with $c_{Kg} = -0.0083$
- c_{Hg} with $c_{Hg} = 0.013$
- c_{Hh} with $c_{Hh} = -0.004$
- c_{Hh} with $c_{Hh} = 0.0067$

ATLAS

$H \to \gamma \gamma$, $\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

- Observed 68% CL
- Observed 95% CL
- Expected 68% CL
- Expected 95% CL

Roberto Di Nardo – Università and INFN Roma Tre
H→ZZ*→4l and H→γγ combination

- Fiducial cross section measurements at 13TeV extrapolated to the full phase-space and combined
 - Additional uncertainties + SM assumption on the BR, BUT significant reduction of stat unc.

- Total Higgs boson production cross section: 55.5 $^{+4.0}_{-3.8}$ pb (SM: 55.6±2.5 pb)

- Differential cross sections measured: p_T^H, $|y_H|$, N_J, $p_T^{\text{lead.}j}$, p_T^H vs $|y_H|
 - Compatibility between the two channels between 20% (p_T^H) and 80% (N_{jets})
 - Compatibility with SM predictions between 23% ($p_T^{\text{lead.}j}$) and 98% ($|y_H|$)

![Graphs showing ATLAS results for H→ZZ* and H→γγ measurements](arXiv:2207.08615)

Roberto Di Nardo – Università and INFN Roma Tre
$H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma \gamma$ combination

- p_T^H measured by $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma \gamma$ jointly interpreted in terms of anomalous couplings of the Higgs boson to bottom and charm quarks (k_b, k_c)
- Exploited shape and normalization effects on the distribution
- Combined also with the constraints from VH, $H \rightarrow bb$ and VH, $H \rightarrow cc$ analyses

$|k_c| < 2.5$ @ 95% CL assuming $B_{BSM}=0$ and $k_i=1$ excepting for k_b

arXiv:2207.08615
Run3 started in 2022 with p-p collisions at $\sqrt{s}=13.6$ TeV, collected about 30 fb$^{-1}$ of collision data

First fiducial and total cross section in $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ and their combination

Same analysis strategy as in for the Run2, detector performances similar to Run2

Selection efficiency in the fiducial phase space \sim50%

$\text{(obs)}\sigma_{\text{fid}} = 2.8 \pm 0.7 \text{(stat)} \pm 0.2 \text{ (sys)}$ fb (SM) $\sigma_{\text{fid}} = 3.67 \pm 0.19$ fb

Main systematics: electron and muon syst.
Run3 started in 2022 with p-p collisions at $\sqrt{s}=13.6$ TeV – collected about 30/fb of collision data

⇒ First fiducial and total cross section in H→γγ and H→ZZ*→4l and their combination

• Same analysis strategy as in for the Run2, detector performances similar to Run2

Selection efficiency in the fiducial phase space ~72%

• $\langle \text{obs} \rangle \sigma_{\text{fid}} = 76\pm11\,(\text{stat})\pm8\,(\text{sys})$ fb \hspace{1cm} (SM) $\sigma_{\text{fid}} = 67.7\pm3.7$ fb

Main systematics: bkg modelling and photon efficiency syst.
New measurements at 13.6 TeV

- Fiducial cross sections extrapolated to the full phase space and combined

\[\sigma(pp \rightarrow H) = 58.2 \pm 8.7 \text{ pb} \]
\[\sigma(pp \rightarrow H)^{SM} = 59.9 \pm 2.6 \text{ pb} \]

- Compatibility with the SM prediction is 85%

- \(H \rightarrow ZZ^* \rightarrow 4l \) and \(H \rightarrow \gamma\gamma \) compatibility is 20%
Higher signal compared to $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ but lower S/B and final state not fully reconstructable.

Measurements performed in two distinct phase space regions targeting different prod. modes

- ggF: $=0, =1$ jet fiducial phase space
- VBF: ≥ 2 jets fiducial phasespace

Observables used to extract the signal: m_T or dedicated discriminant
Differential XS in $H \rightarrow WW \rightarrow \mu \nu$: ggF phase space

- m_T used to extract the signal in each bin of a given observable
- Compared to $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ larger off-diagonal terms in the response matrix
 - Tikhonov-regularized in-likelihood unfolding used

In general, good agreement between th. predictions and measured cross sections

At high Higgs boson transverse momentum ($>120\text{GeV}$) 1σ sensitivity, competitive with other channels
Fiducial measurement in the VBF phase space
- 24% uncertainty, statistical still dominant
- TH predictions within 1σ excluding except for a pure LO prediction

Differential cross sections measured for several observables
- Uncertainties driven by data statistics
- In general in agreement with SM predictions
- Differential cross sections used to constrain anomalous interactions described by a dim-6 EFT

arXiv:2304.03053

Roberto Di Nardo – Università and INFN Roma Tre
• **Run 2 data** have been already **heavily exploited** to feed the extended ATLAS Higgs boson physics program

 – A lot of measurements published using the full Run-2 available statistics

• **Fiducial differential cross sections measured in several decay modes**

 – Predictions tested against unfolded data in multiple observables sensitive to various BSM effects

 • In general, statistical uncertainty is still dominant

 – Results compatible with the SM predictions so far

• LHC Run3 has started in 2022 at 13.6 TeV

 – First fiducial and inclusive cross sections measured in $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ and their combination

 – χ^2 more data expected at the end of Run3 \Rightarrow further improve the precision and sensitivity to possible BSM effects
Backup
• Fiducial cross section measured in VH, $H \rightarrow bb$ with 0 charged leptons associated to the V decay
 — No electron/muon required in the events
• Measured in two fiducial regions defined by the particle level E_T^{miss}

• High p_T Higgs boson production explored in $H \rightarrow bb$ events with large Lorentz boost
 — Higgs boson reconstructed from a single large-radius jet
• Upper limits set on the Higgs boson production cross section as function of p_T^H
 95%CL on the fiducial cross section for $p_T^H>450\text{GeV}$ is 115 fb (SM 18.4fb)
$H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ fiducial phasespace

- **$4l$**

<table>
<thead>
<tr>
<th>Leptons and jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptons</td>
</tr>
<tr>
<td>Jets</td>
</tr>
</tbody>
</table>

Lepton selection and pairing

Lepton kinematics	$p_T > 20, 15, 10$ GeV		
Leading pair (m_{12})	SFOC lepton pair with smallest $	m_Z - m_{\ell\ell}	$
Subleading pair (m_{34})	remaining SFOC lepton pair with smallest $	m_Z - m_{\ell\ell}	$

Event selection (at most one quadruplet per event)

| Mass requirements | 50 GeV $< m_{12} < 106$ GeV and 12 GeV $< m_{34} < 115$ GeV |
|--------------------|
| Lepton separation | $\Delta R(\ell_i, \ell_j) > 0.1$ |
| Lepton/Jet separation | $\Delta R(\ell_i, \text{jet}) > 0.1$ |
| J/ψ veto | $m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs |
| Mass window | 105 GeV $< m_{4\ell} < 160$ GeV |

- **$\gamma\gamma$**

<table>
<thead>
<tr>
<th>Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading (sub-leading) p_T^γ</td>
</tr>
<tr>
<td>Pseudorapidity</td>
</tr>
<tr>
<td>Isolation</td>
</tr>
</tbody>
</table>

Di-photon system

| Mass window | 105 GeV $< m_{\gamma\gamma} < 160$ GeV |

![ATLAS Simulation](image-url)

- Diphoton fiducial
- VBF-enhanced
- $N_{\text{sys}} = 1$
- High E_T^{miss}
- ttH-enhanced

Fraction of signal process

Roberto Di Nardo – Università and INFN Roma Tre
H → WW → eνμν fiducial phase space

- **ggF**

<table>
<thead>
<tr>
<th>Category</th>
<th>Selection Requirements</th>
<th>Signal Region</th>
<th>Fiducial Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Selection</td>
<td>Exactly two isolated leptons (ℓ = e, μ) with opposite charge</td>
<td>Lepton pair flavors</td>
<td>e-μ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lepton pair charge</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leading (subleading) lepton p_T</td>
<td>$p_T > 22$ GeV (> 15 GeV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N_{\text{Jet}, (p_T > 30\text{ GeV})} = 0$</td>
<td>$N_{\text{Jet}, (p_T > 30\text{ GeV})} = 1$</td>
</tr>
<tr>
<td>Background rejection</td>
<td>$\Delta\phi_{\ell\ell, E_T^{\text{miss}}/\ell} \geq \pi/2$</td>
<td>$\Delta R(\ell, \ell)$</td>
<td>overlap removal</td>
</tr>
<tr>
<td></td>
<td>$p_T^{\ell} > 30$ GeV</td>
<td>$m_{\ell\ell} < m_T - 25$ GeV</td>
<td>> 0.1</td>
</tr>
<tr>
<td></td>
<td>$m_T > 80$ GeV</td>
<td>$m_{\ell\ell} > 10$ GeV</td>
<td>0</td>
</tr>
<tr>
<td>$H → WW^* →\ell\nu\ell\nu$ topology</td>
<td>$m_{\ell\ell} < 55$ GeV</td>
<td>Central jet veto ($p_T > 20$ GeV)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>$\Delta\phi_{\ell\ell} < 1.8$</td>
<td>Outside lepton veto</td>
<td>✓</td>
</tr>
<tr>
<td>Source</td>
<td>Uncertainty [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic uncertainty</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background modelling (spurious signal)</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon trigger and selection efficiency</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon energy scale & resolution</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pile-up modelling</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgs boson mass</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical (signal) modelling</td>
<td><0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical uncertainty</td>
<td>25.2</td>
</tr>
<tr>
<td>Systematic uncertainty</td>
<td>7.9</td>
</tr>
<tr>
<td>All electron uncertainties</td>
<td>6.6</td>
</tr>
<tr>
<td>Reducible background estimation</td>
<td>3.5</td>
</tr>
<tr>
<td>All muon uncertainties</td>
<td>3.2</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.2</td>
</tr>
<tr>
<td>ZZ* theoretical uncertainties</td>
<td>2</td>
</tr>
<tr>
<td>Other uncertainties</td>
<td><1</td>
</tr>
<tr>
<td>Total</td>
<td>26.4</td>
</tr>
</tbody>
</table>