Higgs boson fiducial differential cross section measurements at ATLAS

Roberto Di Nardo¹ on behalf of the ATLAS Collaboration ¹Università and INFN Roma Tre

22–26 May 2023. Belgrade, Serbia

Fiducial differential cross section measurements

- The fiducial phase space is defined to **minimize** the **extrapolation effects** and mimic the detector & analysis acceptance
- Most model independent way to study the properties of the Higgs boson
- Downside: reduced sensitivity for BSM effects compared to dedicated analyses
- Observable sensitive to: Higgs boson production kinematics, associated jet kinematics, decay kinematics e.g. to probe spin-CP of the Higgs boson

Fiducial and differential XS in $H \rightarrow ZZ^* \rightarrow 4I$

Fiducial and differential XS in $H \rightarrow ZZ^* \rightarrow 4I$

- Good agreement with SM predictions found
- In VBF enriched bin with $m_{jj} \ge 400 \text{GeV}$ and $|\Delta \eta_{jj}| > 3$: (Obs) $0.215^{+0.077}_{-0.064}$ fb
 - -~36% uncertainty dominated by the data statistics

 $(exp) 0.134^{+0.065}_{-0.065}$ fb

Fiducial and differential XS in $H \rightarrow \gamma \gamma$

VBF default MC + XH

VBF fiducial region

π/2

 $\Delta \phi_{.}$

- Very clean signature with two isolated photons
- Main background from the $\gamma\gamma$ continuum, signal extraction with a fit to $m_{\gamma\gamma}$
- Matrix unfolding implemented in the likelihood fit
- Inclusive fiducial cross section:

 $(obs)\sigma_{fid} = 67\pm5(stat)\pm4(sys) fb$ (SM) $\sigma_{fid} = 64\pm4 fb$

• Differential cross sections measured in the inclusive fiducial phase space and in a VBF-enriched fiducial region

• χ^2 compatibility between the measured cross sections and SM predictions (default MC) ranges from 27% to 95%

JHEP 08 (2022) 027

Fiducial and differential XS in $H \rightarrow \gamma \gamma$

- Differential fiducial cross section measured for **5** observables used to constrain possible **BSM** effects in the Higgs boson interactions within the effective field theory framework
 - -SM Lagrangian complemented with additional **CP-even** and **CP-odd** dim-6 operators in the SMEFT Warsaw basis
 - –Variables: \mathbf{p}_T^{yy} , \mathbf{N}_j , \mathbf{m}_{jj} , $\Delta \phi_{jj}$, \mathbf{p}_T^{j1} with the correlation among the observables properly considered
- Limits set on SMEFT Wilson coefficients both using SM with dimension-6 operators interference-only terms and including the quadratic (dim-6) terms <u>JHEP 08 (2022) 027</u>

$H \rightarrow ZZ^* \rightarrow 4I \text{ and } H \rightarrow \gamma\gamma \text{ combination}$

• Fiducial cross section measurements at 13TeV extrapolated to the full phase-space and combined

-Additional uncertainties + SM assumption on the BR, BUT significant reduction of stat unc.

- Total Higgs boson production cross section: 55.5 ^{+4.0}_{-3.8} pb (SM: 55.6±2.5 pb)
- Differential cross sections measured: p_T^H , $|y_H|$, N_J , $p_T^{lead. j}$, $p_T^H vs|y_H|$
 - –Compatibility between the two channels between 20% (p_T^H) and 80% (N_{jets})
 - –Compatibility with SM predictions between 23% ($p_{T}^{lead.\,j}$) and 98% $\,(|Y_{H}|)$

Roberto Di Nardo - Università and INFN Roma Tre

arXiv:2207.08615

$H \rightarrow ZZ^* \rightarrow 4I \text{ and } H \rightarrow \gamma\gamma \text{ combination}$

- p_T^H measured by $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ jointly interpreted in terms of anomalous couplings of the Higgs boson to bottom and charm quarks (k_b , k_c)
 - -Exploited shape and normalization effects on the distribution
 - -Combined also with the constraints from VH, $H \rightarrow bb$ and VH, $H \rightarrow cc$ analyses

• $|k_c| < 2.5 @ 95\%$ CL assuming $B_{BSM}=0$ and $k_i=1$ excepting for k_b

arXiv:2207.08615

PRL 118, 121801 (2017)

ATLAS-CONF-2023-032

New measurements at 13.6TeV

- Run3 started in 2022 with p-p collisions at $\sqrt{s}=13.6$ TeV, collected about 30fb⁻¹ of collision data \Rightarrow First fiducial and total cross section in H $\rightarrow\gamma\gamma$ and H \rightarrow ZZ* \rightarrow 4l and their combination
- Same analysis strategy as in for the Run2, detector performances similar to Run2

- Selection efficiency in the fiducial phase space ~50%
- (obs) σ_{fid} = 2.8±0.7(stat)±0.2 (sys) fb (SM) σ_{fid} = 3.67±0.19 fb
- Main systematics: electron and muon syst.

ATLAS-CONF-2023-032

New measurements at 13.6TeV

- Run3 started in 2022 with p-p collisions at \sqrt{s} =13.6 TeV collected about 30/fb of collision data \Rightarrow First fiducial and total cross section in H $\rightarrow\gamma\gamma$ and H \rightarrow ZZ* \rightarrow 4l and their combination
- Same analysis strategy as in for the Run2, detector performances similar to Run2

- Selection efficiency in the fiducial phase space ~72%
- (obs) σ_{fid} = 76±11(stat)±8 (sys) fb (SM) σ_{fid} = 67.7±3.7 fb
- Main systematics: bkg modelling and photon efficiency syst.

ATLAS-CONF-2023-032

New measurements at 13.6TeV

• Fiducial cross sections extrapolated to the full phase space and combined

Differential XS in $H \rightarrow WW^* \rightarrow ev\mu v$

- Higher signal compared to $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ but lower S/B and final state not fully reconstructable.
- Measurements performed in two distinct phase space regions targeting different prod. modes

- ggF := 0, =1 jet fiducial phase space - VBF : \geq 2 jets fiducial phasespace

- Observables used to extract the signal: m_T or dedicated discriminant

arXiv:2304.03053

Differential XS in $H \rightarrow WW \rightarrow ev\mu v$: ggF phase space

- $\bullet\ m_T$ used to extract the signal in each bin of a given observable
- Compared to $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ larger off diagonal terms in the response matrix

-Tikhonov-regularized in-likelihood unfolding used

- In general, good agreement between th. predictions and measured cross sections
- At high Higgs boson transverse momentum (>120GeV) 1 σ sensitivity, competitive with other channels

arXiv:2301.06822

Differential XS in $H \rightarrow WW \rightarrow ev\mu v$: VBF phase space

- Fiducial measurement in the VBF phase space
- 24% uncertainty , statistical still dominant
- •TH predictions within 1σ excluding except for a pure LO prediction

- Differential cross sections measured for several observables
- Uncertainties driven by data statistics
- In general in agreement with SM predictions
- Differential cross sections used to constrain anomalous interactions described by a dim-6 EFT

arXiv:2304.03053

ATLAS

Summary

- Run 2 data have been already heavily exploited to feed the extended ATLAS Higgs boson physics program
 - -A lot of measurements published using the full Run-2 available statistics
- Fiducial differential cross sections measured in several decay modes
 - Predictions tested against unfolded data in multiple observables sensitive to various BSM effects
 - In general, statistical uncertainty is still dominant
 - -Results compatible with the SM predictions so far
- LHC Run3 has started in 2022 at 13.6 TeV
 - –First fiducial and inclusive cross sections measured in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ and their combination
 - -x2 more data expected at the end of Run3 \Rightarrow further improve the precision and sensitivity to possible BSM effects

Backup

$H \rightarrow bb$

- Fiducial cross section measured in VH, H → bb with
 O charged leptons associated to the V decay
 –No electron/muon required in the events
- \bullet Measured in two fiducial regions defined by the particle level E_{T}^{miss}

- High p_T Higgs boson production explored in $H \longrightarrow bb$ events with large Lorentz boost
 - Higgs boson reconstructed from a single large-radius jet
- \bullet Upper limits set on the Higgs boson production cross section as function of $p_{T}{}^{H}$
- 95%CL on the fiducial cross section for p_T^H >450GeV is 115 fb (SM 18.4fb)

$H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ fiducial phasespace

^{• 41}

Leptons and jets			
Leptons	$p_{\rm T} > 5 { m GeV}, \eta < 2.7$		
Jets	$p_{\rm T} > 30 \text{ GeV}, y < 4.4$		
Lepton selection and pairing			
Lepton kinematics	$p_{\rm T} > 20, 15, 10 { m GeV}$		
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Subleading pair (m_{34})	remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Event selection (at most one quadruplet per event)			
Mass requirements	50 GeV < m_{12} < 106 GeV and 12 GeV < m_{34} < 115 GeV		
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$		
Lepton/Jet separation	$\Delta R(\ell_i, \text{jet}) > 0.1$		
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs		
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$		
If extra lepton with $p_{\rm T} > 12 \text{ GeV}$	Quadruplet with largest matrix element value		

Photons			
Leading (sub-leading) $p_{\rm T}^{\gamma}$ Pseudorapidity Isolation	$p_{\rm T}^{\gamma}/m_{\gamma\gamma} > 0.35(0.25)$ $ \eta < 2.47$ and outside $1.37 < \eta < 1.52$ $E_{\rm T}^{\rm iso}/E_{\rm T}^{\gamma} < 0.05$		
Di-photon system			
Mass window	$105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$		

γγ

$H \rightarrow WW \rightarrow ev\mu v$ fiducial phase space

VBF

Selection Requirements	Signal Region	Fiducial Region
Lepton pair flavors	e-µ	
Lepton pair charge	0	
Leading (subleading) lepton $p_{\rm T}$	> 22 GeV (> 15 GeV)	
	$ \eta^{\mu} < 2.5$	
Lepton n^{ℓ}	$0 < \eta^e < 1.37$	
	or	$ \eta^{e} < 2.5$
	$1.52 < \eta^e < 2.47$	
No. of additional leptons	0	
$\Delta R(\ell,\ell)$	overlap removal	> 0.1
$m_{\ell\ell}$	> 10 GeV	
$\Delta R(\ell, \text{jet})$	overlap removal	> 0.4
No. of jets $(p_{\rm T} > 30 \text{ GeV}, \eta < 4.5)$	≥ 2	
No. of <i>b</i> -jets ($p_{\rm T} > 20$ GeV, $ \eta < 2.5$)	0	
$m_{ au au}$	$< m_Z - 25 \text{ GeV}$	
Central jet veto ($p_{\rm T} > 20 \text{ GeV}$)	\checkmark	
Outside lepton veto	\checkmark	
m _{jj}	> 450 GeV	
$ \Delta y_{jj} $	> 2.1	
$ \Delta \phi_{\ell \ell} $	< 1.4 rad	

• ggF

Category	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0$	$N_{\rm jet, (p_T>30 GeV)} = 1$	
	Exactly two isolated leptons ($\ell = e, \mu$) with opposite charge $p_{\rm T}^{\rm lead} > 22 {\rm GeV}$, $p_{\rm T}^{\rm sublead} > 15 {\rm GeV}$		
Pre-Selection	$ \eta_e < 2.5, \eta_{\mu} < 2.5, p_{\rm T}^{\rm jet} > 30 {\rm GeV}$		
	$m_{\ell\ell} > 10 \text{ GeV}$ $E_{\mathrm{T}}^{\mathrm{miss, track}} > 20 \text{ GeV}$		
Background rejection	$\overline{N_{b-\text{jet},(p_{\rm T}>20{\rm GeV})}}=0$		
	$\Delta \phi_{\ell\ell,E_{\tau}^{\rm miss}} > \pi/2$	$\max(m_{\rm T}^\ell) > 50 {\rm GeV}$	
	$p_{\rm T}^{\ell\ell} > 30 {\rm GeV}$	$m_{\tau\tau} < m_Z - 25 \text{ GeV}$	
	$m_{\rm T} > 80 {\rm GeV}$		
$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$	$m_{\ell\ell} < 55 \mathrm{GeV}$		
topology	$\Delta \phi_{\ell\ell} < 1.8$		

 $H \rightarrow ZZ^* \rightarrow 4I$

Н→ уу

Source	Uncertainty [%]
Statistical uncertainty	14.0
Systematic uncertainty	10.3
Background modelling (spurious signal)	6.0
Photon trigger and selection efficiency	5.8
Photon energy scale & resolution	5.5
Luminosity	2.2
Pile-up modelling	1.2
Higgs boson mass	0.1
Theoretical (signal) modelling	< 0.1
Total	17.4

Source	Uncertainty [%]
Statistical uncertainty	25.2
Systematic uncertainty	7.9
All electron uncertainties	6.6
Reducible background estimation	3.5
All muon uncertainties	3.2
Luminosity	2.2
ZZ* theoretical uncertainties	2
Other uncertainties	<1
Total	26.4

