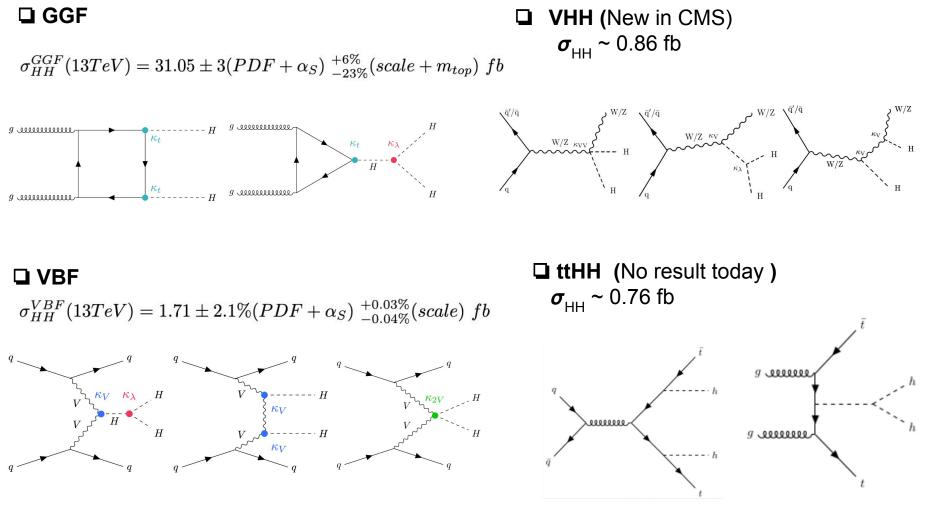

Non-resonant HH production and Higgs self-coupling at CMS Saswati Nandan

On behalf of the CMS collaboration

Introduction

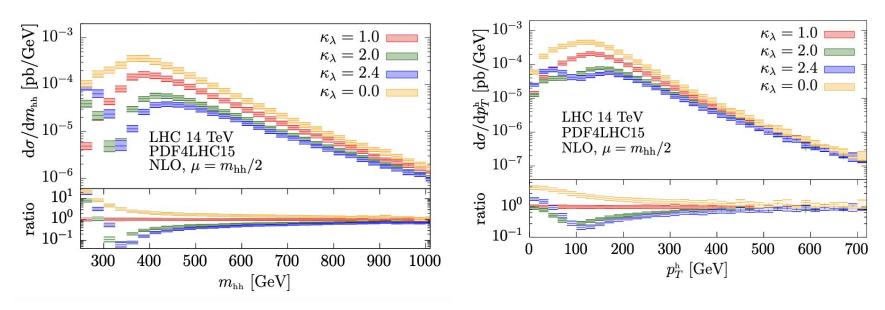
- Since Higgs boson discovery, many of its properties have been measured very precisely
- □ So far, the measurements agree with Standard Model predictions
- $\Box \quad \text{The Higgs potential } V(H) = \frac{1}{2}m_H^2 H^2 + \lambda v H^3 + \frac{1}{4}\lambda H^4 \qquad \checkmark \lambda H^3$
- The Higgs self-coupling, λ has not been measured yet. Only upper limits have been set $\lambda = \frac{m_H^2}{2v^2}$ ~0.13 (m_H, v are measured precisely)
 - The coupling λ is difficult to measure, because the cross section for HH production, which provides sensitivity to this coupling, is very small
 - λ can also be constrained indirect way through single Higgs production



Physics Letters B (2014) 142-149

Introduction

□ HH pair can be produced in different ways:


□ Not easy to probe!!!

Non-resonant HH production and Higgs self-coupling at CMS LHCP2023

Introduction

Anomalous coupling can modify the cross section of HH pair production as well as kinematic properties of HH pair

JHEP(2019)066

 \Box Coupling modifiers κ , defined as deviation from SM value

$$\mathbf{\kappa}_{\lambda} = \lambda / \lambda_{\text{SM}}, \mathbf{\kappa}_{V} = C_{V} / C_{V,\text{SM}}, \mathbf{\kappa}_{2V} = C_{2V} / C_{2V,\text{SM}}$$

Deviation from 1 indicates BSM physics

How to probe HH production

Depends on decay products of Higgs boson:

(submitted to JHEP)

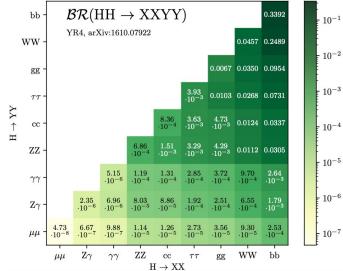
Shown last year

Will be shown today

 \Box HH \rightarrow bbyy JHEP 03 (2021) 257

□ HH→bbWW* <u>CMS PAS HIG-21-005</u>

 $\Box HH \rightarrow WW^* \gamma \gamma CMS PAS HIG-21-014$


□ VHH→bbbb CMS HIG-22-006

 \square HH \rightarrow bbZZ <u>arXiv:2206.10657</u> (submitted to JHEP)

HH→WW*WW*/WW*ττ/ττττ arXiv:2206.10268

HH \rightarrow **bbrr** <u>arXiv:2206.09401</u> (submitted to PLB)

HH→bbbb Phys. Rev. Lett. 129 (2022) 081802

H→bb highest BR,

large hadronic background

H→WW* second highest BR, large hadronic background

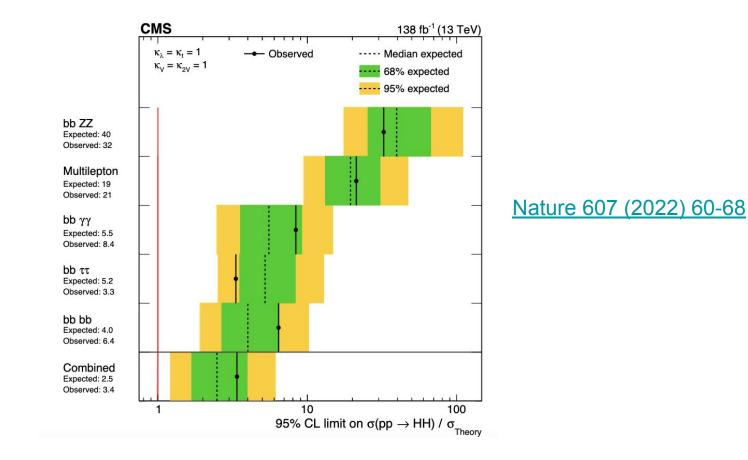
 $H \rightarrow \gamma \gamma$ low BR,

good mass resolution

 $H \rightarrow ZZ \text{ low BR},$

clean signature in leptonic decay

 $H \rightarrow \tau \tau$ low BR,


low background

No golden channel!!!

Saswati Nandan

Combined limit based on previous results

Combined upper limit on ggF+VBF production $\sigma_{\rm HH}$ < 3.4 (2.5) $\sigma_{\rm HH}$ (SM) based on previous result

Analysis Strategy

□ Targeting both GGF and VBF production mode

- □ 2 channels, based on W decay:
 - **Double lepton**(DL): WW* \rightarrow IvIv
 - □ Single lepton(SL): WW* \rightarrow lvqq
- All channels are further splitted :
 - Resolved: 2 small radius jet coming from 2 b quarks
 - Boosted: 2 jets coming from 2 b quarks merged in a single large radius jet
- **Resolved**:
 - Jets are identified by Deep Neural network (DeepJet)
 - **1b, 2b**: 1 or 2 jets passing medium working point of Deepjet

Event Selection

Lepton:

- 2 (1) good lepton in DL(SL)
- Veto extra lepton

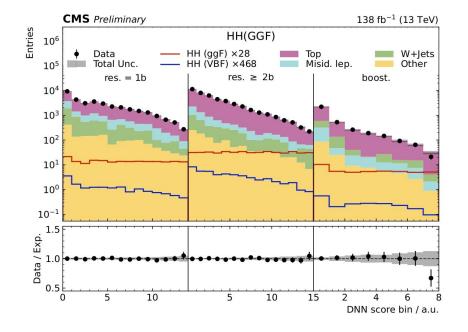
Veto $81 < m_{\parallel} < 101 \text{ GeV}$ in DL

Jet:

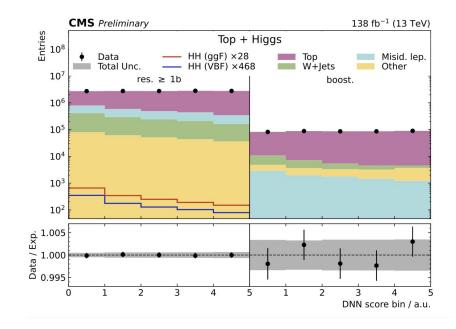
Resolved: >=2 (>=3) small radius jet in DL(SL)

Boosted: 1 large radius jet in DL, SL,

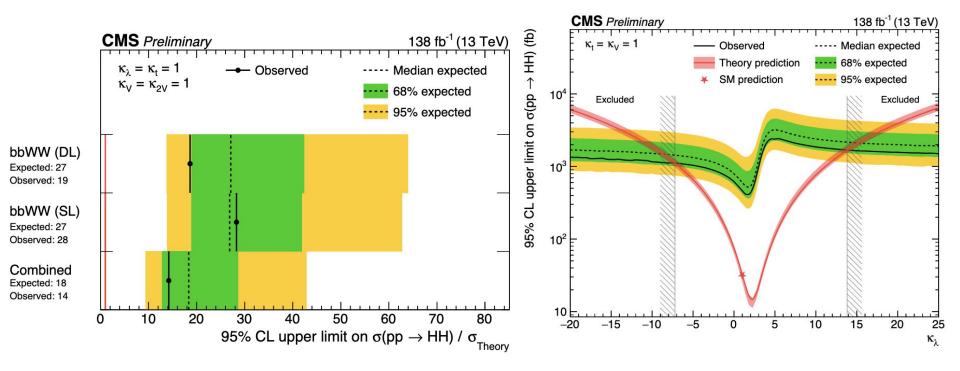
>=1 small radius jet in SL


Background Estimation

QCD multijet, Fake lepton: data driven DY: data driven in DL Other: Estimated from simulation



Signal Extraction


- Multi-classifier training: Separate GGF signal, VBF signal and other dominant backgrounds using Deep Neural Network(DNN)
- □ Signal distribution is flat in signal nodes
- □ Total background distribution is flat in background nodes

□ Use DNN score to extract signal

- **Exclusion limit on HH production cross section:**
 - \Box Observed (expected): $\sigma_{\rm HH}$ < 14 (18) $\sigma_{\rm HH}$ (SM)
- Constraint on Higgs self coupling modifier:
 - □ Observed (expected): -7.2(-8.7) < κ_{λ} < 13.8(15.2)

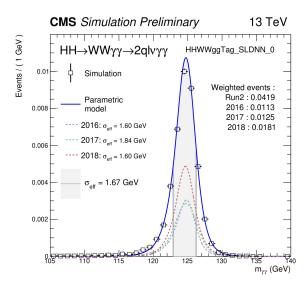
Analysis Strategy

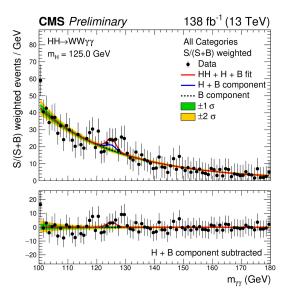
Targeting GGF production mode

- □ 3 channels, based on W decay:
 - ❑ Fully hadronic(FH): WW*→4q
 - **Di-lepton**(DL): WW* \rightarrow | ν | ν
 - ❑ Single lepton(SL): WW*→lvqq

Signal and Background Modelling

- Signal: Modelled by an analytic fit of a sum of up to five Gaussians to a binned m_{yy} distribution
- Single Higgs: Same as signal
- Continuum background: Modelled from data

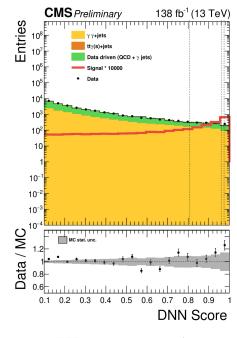

Event Selection

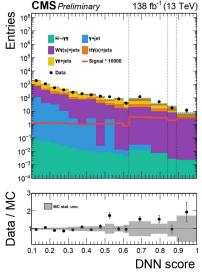

Photon:

- 1 good di-photon candidate
- $\square 100 < m_{\gamma\gamma} < 180 \text{ GeV}$
- Lepton:
 - **O**, 1, 2 lepton in FH, SL, DL
 - Veto extra lepton

Jet:

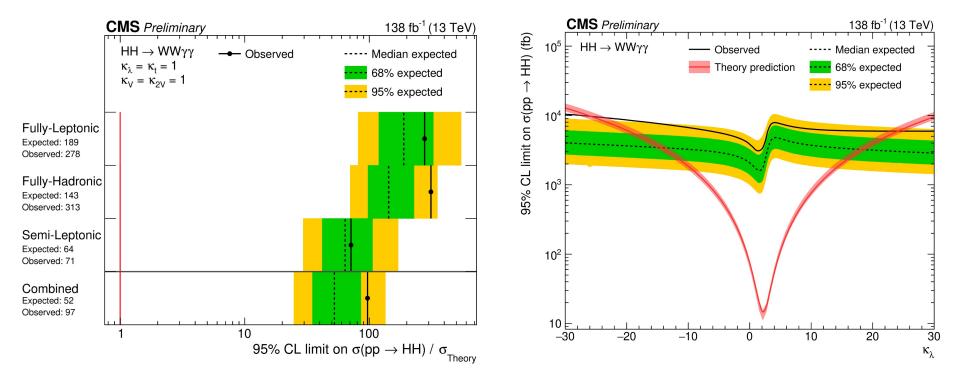
□ >=4 small radius jet in FH




Signal Extraction

- 🖵 FH:
 - **bb** $\gamma\gamma$ rejection: BDT classifier to separate bb $\gamma\gamma$ and WW $\gamma\gamma$
 - □ Signal: $bb_{\gamma\gamma}$, Background: $WW_{\gamma\gamma}$, $\gamma\gamma$ +jets, γ +jets, QCD multijet
 - □ **WW**_{$\gamma\gamma$} **classifier**: BDT classifier to separate WW_{$\gamma\gamma$} signal and $\gamma\gamma$ +jets, γ +jets, QCD multijet backgrounds
- **DL**: Cut based

SL:


- Multi-classifier: Separate signal, single Higgs, and continuum background
- 4 categories are defined for each classifier output to maximize signal sensitivity
- □ Combined fit of $m_{\gamma\gamma}$ is performed in all classifier categories to extract signal

HH→WW*γγ CMS PAS HIG-21-014

□ Exclusion limit on HH production cross section:

- □ Observed (expected): $\sigma_{_{\rm HH}}$ < 52 (97) $\sigma_{_{\rm HH}}$ (SM)
- □ Constraint on Higgs self coupling modifier:
 - □ Observed (expected): -25.8 (-14.4) < k_{λ} < 24.1 (18.3)

VHH→4b <u>CMS HIG-22-006</u>

Analysis Strategy

- □ 4 channels, based on W/Z decay: □ $SL(W \rightarrow |v)$, **MET**(Z \rightarrow vv), **DL**(Z \rightarrow ||), **FH**(W/Z \rightarrow qq)
- $\hfill\square$ BDT training to separate κ_λ and κ_{VV} coupling enriched regions
- **Resolved (**All channels):
 - Jets are identified by Deep Neural network (DeepJet) training
 - 3b, 4b: 3 or 4 jets passing medium working point of Deepjet
- **Boosted (Single lepton, MET):**
 - Jets are identified by <u>ParticleNet</u> training
 - Low, High purity: Classified based on ParticleNet score

Event Selection

- Jet:
 - >=2 large radius jet (boosted) or >=3 small radius jet (resolved)

Lepton:

1 (SL) , 2 (DL) good lepton **MET:**

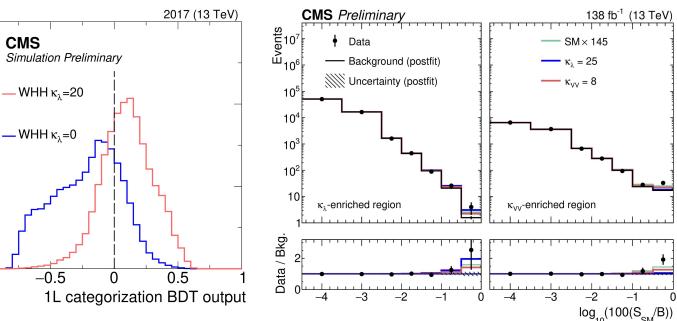
Missing transverse energy >150 (resolved),

250 (boosted) GeV

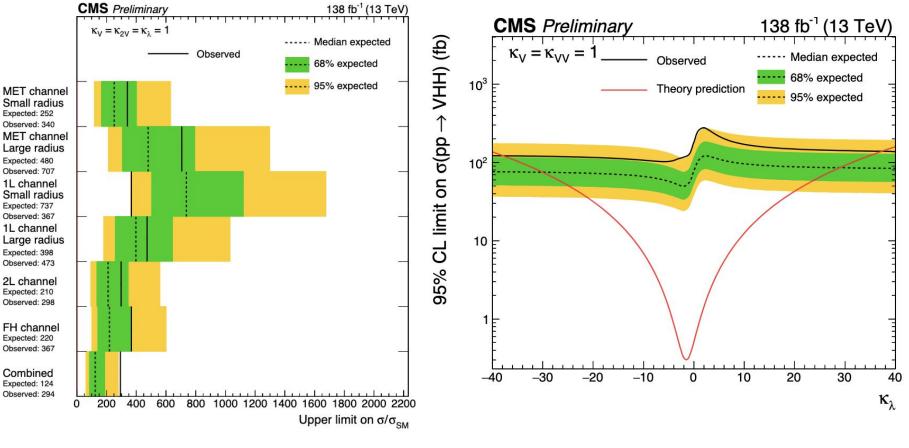
VHH→4b <u>CMS HIG-22-006</u>

Background Estimation

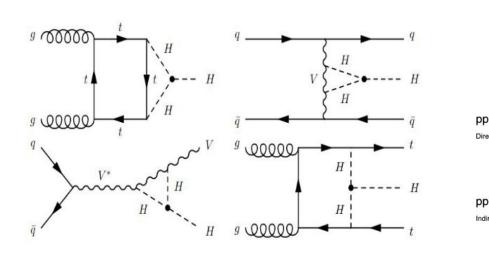
- BDT reweighting:
 - Used in statistics depleted region
 - Train between nominal region and other region with some cuts inverted
- **QCD** multijet in FH:
 - Data driven
- Other: From simulation

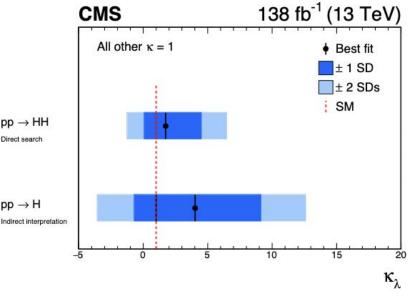

Event fraction 1.0

0.05


0_1

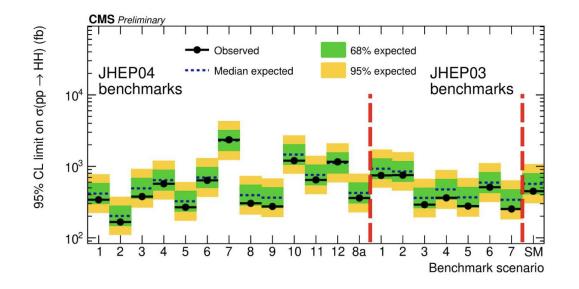
- BDT or Neural network training to separate signal and background
- Separate training for each κ_{λ} and $\kappa_{\nu\nu}$ enhanced regions
- Use classifier output to extract signal





- □ Exclusion limit on HH production cross section:
 - \Box Observed (expected): $\sigma_{\rm HH}$ < 294 (124) $\sigma_{\rm HH}$ (SM)
- □ Constraint on Higgs self coupling modifier:
 - □ Observed (expected): $-37.7(-30.1) < k_{\lambda} < 37.2$ (28.9)

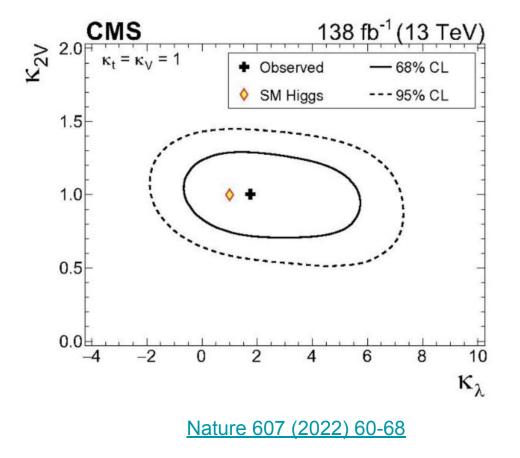
Higgs self-coupling can be constrained through single Higgs production at NLO corrections


NLO diagrams contributing to Higgs self-coupling

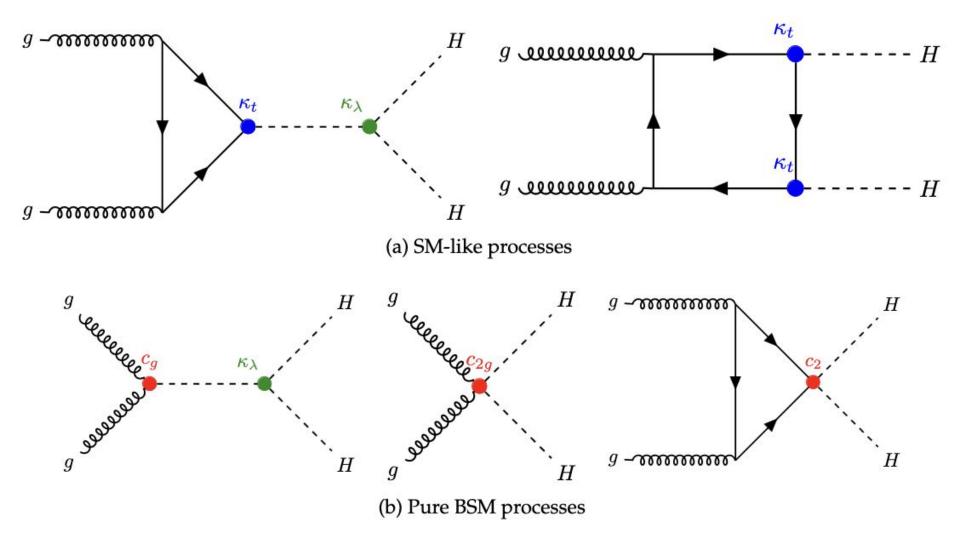
Nature 607 (2022) 60-68

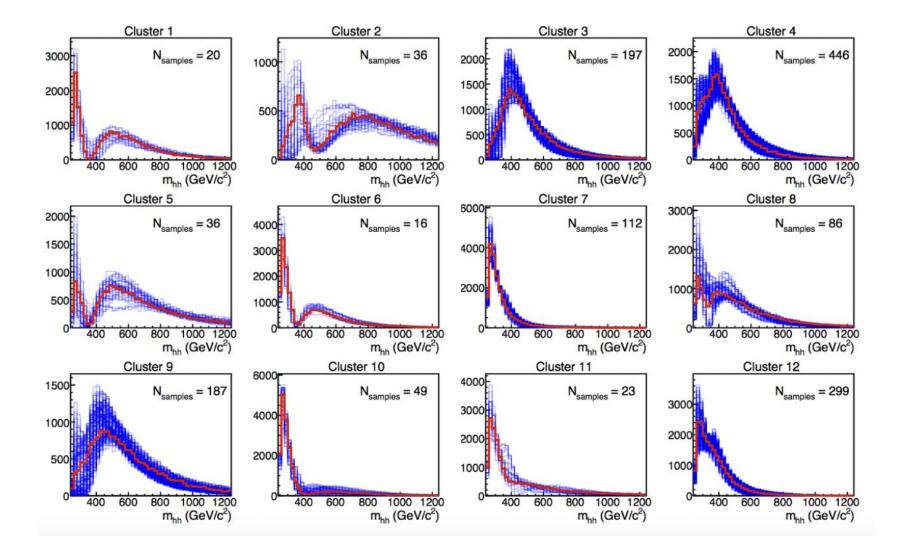
- Search for non-resonant HH production has been probed in different final states using the full LHC Run2
- □ Three new channels (HH→bbWW*, HH→WW* $\gamma\gamma$, VHH→bbbb) have been added since last year
- □ Many BSM studies have been done (More in back up)

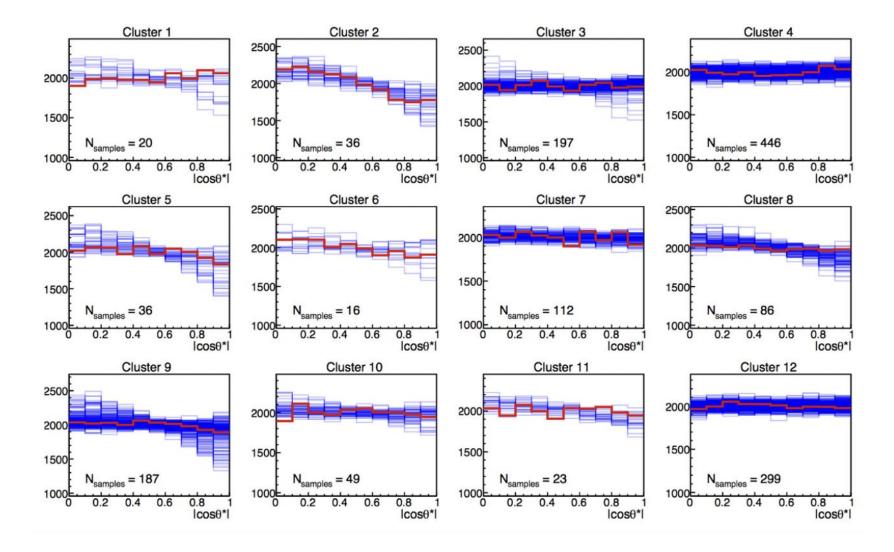
Looking forward to seeing many interesting results with Run3 and full combination


Stay tuned!!!

Back up


Constraint on κ_{λ} vs κ_{2V}


BSM


EFT benchmarks arXiv:1507.02245

EFT benchmarks arXiv:1507.02245

	1	2	3	4	5	6	7	8	9	10	11	12	8a
kl	7.5	1.0	1.0	-3.5	1.0	2.4	5.0	15.0	1.0	10.0	2.4	15.0	1.0
kt	1.0	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.5	1.0	1.0	1.0
c2	-1.0	0.5	-1.5	-3.0	0.0	0.0	0.0	0.0	1.0	-1.0	0.0	1.0	0.5
cg	0.0	-0.8	0.0	0.0	0.8	0.2	0.2	-1.0	-0.6	0.0	1.0	0.0	0.8/3
c2g	0.0	0.6	-0.8	0.0	-1.0	-0.2	-0.2	1.0	0.6	0.0	-1.0	0.0	0.0

	1	2	3	4	5	6	7
kl	3.94	6.84	2.21	2.79	3.95	5.68	-0.10
kt	0.94	0.61	1.05	0.61	1.17	0.83	0.94
c2	-1./3.	1./3.	-1./3.	1./3.	-1./3.	1./3.	1.
cg	0.5*1.5	0.0*1.5	0.5*1.5	-0.5*1.5	1./6.*1.5	-0.5*1.5	1./6.*1.5
c2g	1./3.*(-3.)	-1./3.*(-3.)	0.5 *(-3.)	1./6.*(-3.)	-0.5 *(-3.)	1./3.*(-3.)	-1./6.*(-3.)

Object selection

Small radius jet:

- □ p_{T} > 25 GeV, $|\eta|$ < 2.4
- Medium working point of DeepJet score

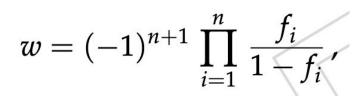
Large radius jet:

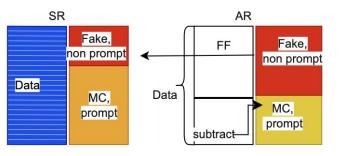
$$\square$$
 p_T > 200 GeV, |η| < 2.4, τ₂ / τ₁
< 0.75

- \Box p_T of subjet > 20 GeV
- □ 30 < m_{sD} < 210
- □ m_{||} > 12 GeV

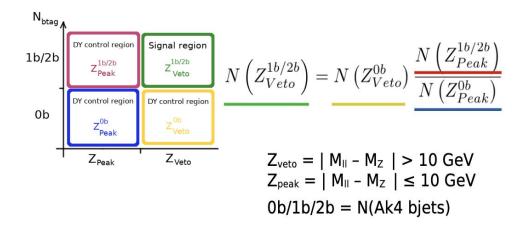
Event category in SL channel:

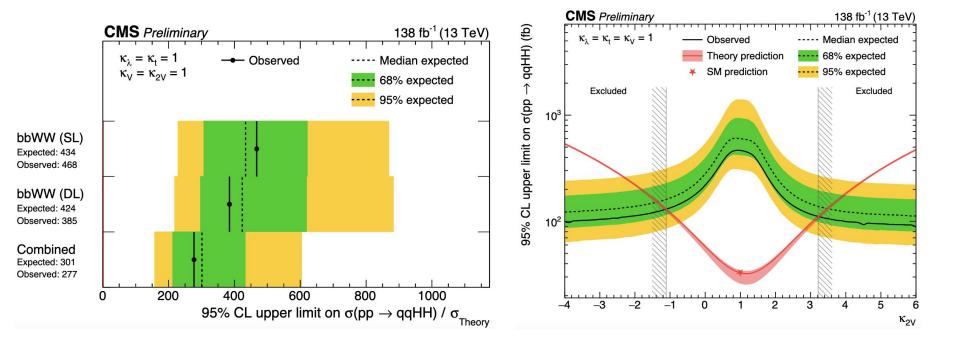
Categories	Sub-Categories				
HH(GGF)	Resolved 1b Resolved 2b		Boosted		
HH(VBF)	Resolved 1b Resolved 2b		Boosted		
Top + Higgs	Reso	Boosted			
WJets + Other	Inclusive				


Event category in DL channel:


Categories	Sub-Categories				
HH(GGF)	Resolved 1b Resolved 2		Boosted		
HH(VBF)	Resolved 1b	Resolved 2b	Boosted		
Top + Other	Resc	Boosted			
DY + Multi-boson	Inclusive				

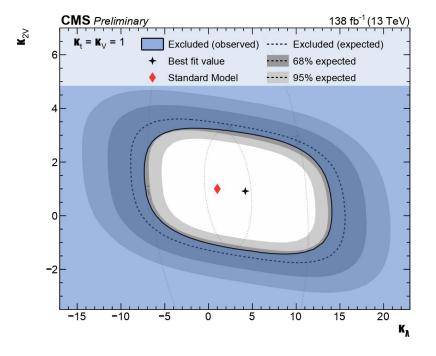
QCD multijet, Fake lepton estimation:


- $\Box SR \rightarrow Signal region$
- □ AR → Similar to signal region but lepton fails the tight selection
- □ Prompt \rightarrow lepton matched with generator level lepton coming from W, Z, T or Higgs
- $\hfill FF \to$ fake factor which is the probability to pass the fake to tight cut



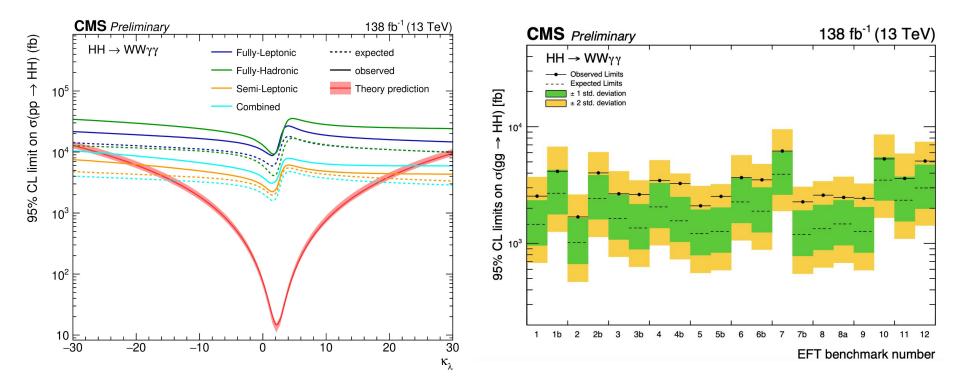
DY estimation:

- □ Calculate transfer weight from 0-bjet \rightarrow 1/2-bjet region in Z-peak region
- ❑ Weights are binned in HT (P_T sum of AK4 jets) for resolved and softdrop mass of leading AK8 jet for boosted category.
- Apply transfer weight in Z-veto region
- Non DY backgrounds are subtracted from data in both Z-peak and Z-veto region.



□ Exclusion limit on HH production cross section in VBF production:

- □ Observed (expected): $\sigma_{\rm HH}$ < 277 (301) $\sigma_{\rm HH}$ (SM)
- **Constraint on** κ_{2V} :
 - □ Observed (expected): $-1.1(-1.4) < \kappa_{2V} < 3.2$ (3.5)


Object selection:

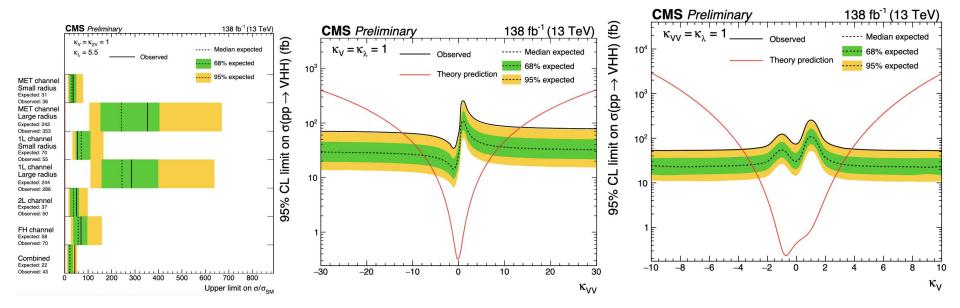
 \Box p_T > 35 (25) GeV leading (sub-leading) photon

□ |**η**| < 2.5

- \square p_T/m_{yy} > 1/3 (1/4) for leading(sub-leading) photon in Fully Hadronic and Di-lepton channel
- □ Jet p_⊤ > 25GeV, |**η**| < 2.4
- □ No jet with medium working point of btag score in Di-leptonic channel

VHH→4b CMS HIG-22-006

Object Selection


Channel	Vector boson decay products selection	Vector boson reconstruction and selection	Jet selection
MET small-radius		$ec{p}_{ ext{T}}^{ ext{Z}} = ec{p}_{ ext{T}}^{ ext{miss}}$ $p_{ ext{T}}^{ ext{Z}} > 150 ext{GeV}$	\geq 4 small-radius jets with $p_{\rm T}$ > 35 GeV
MET large-radius		$ec{p}_{ ext{T}}^{ extsf{Z}} = ec{p}_{ extsf{T}}^{ ext{miss}} onumber \ p_{ extsf{T}}^{ extsf{Z}} > 250 ext{GeV}$	\geq 2 large-radius jets with $p_{\rm T}$ > 200 GeV
1L	$p_{\rm T}^{\rm e} > 32(28) {\rm GeV} \\ 2018/2017 (2016) \\ {\rm OR} \\ p_{\rm T}^{\mu} > 25 {\rm GeV} \\ \Delta \phi(\vec{p}_{\rm T}^{\ell},\vec{p}_{\rm T}^{\rm miss}) < 2.0$	$ec{p}_{ ext{T}}^{ ext{W}} = ec{p}_{ ext{T}}^{\ell} + ec{p}_{ ext{T}}^{ ext{miss}}$ $p_{ ext{T}}^{ ext{W}} > 125 ext{GeV}$	\geq 3 small-radius jets with $p_{\rm T}$ > 25 GeV and \geq 4 small-radius jets with $p_{\rm T}$ > 15 GeV OR \geq 2 large-radius jets with $p_{\rm T}$ > 200 GeV
2L	$p_{ m T}^{\mu_1} > 20 { m GeV}$ $p_{ m T}^{\mu_2} > 20 { m GeV}$ $p_{ m T}^{ m e_1} > 25 { m GeV}$ $p_{ m T}^{ m e_2} > 20 { m GeV}$	$\vec{p}^{Z} = \vec{p}^{\ell_1} + \vec{p}^{\ell_2}$ $p_{\mathrm{T}}^{Z} > 50 \mathrm{GeV}$	\geq 4 small-radius jets with $p_{\rm T}$ > 20 GeV
FH	$p_{\mathrm{T}}^{\mathrm{J}_{i}} > 20\mathrm{GeV}$	$ec{p}^{ m V} = ec{p}^{ m J_1} + ec{p}^{ m J_2}$ 65 < $m_{ m V}$ < 105 GeV	\geq 4 small-radius jets with $p_{\rm T}$ > 40 GeV and \geq 6 small-radius jets with $p_{\rm T}$ > 20 GeV

VHH→4b CMS HIG-22-006

Event Categories

	MET small-radius	MET large-radius	1L small-radius	1L large-radius	2L	FH
Coupling enrichment	$\kappa_{\lambda}, \kappa_{\rm VV}$	$\kappa_{ m VV}$	$\kappa_{\lambda}, \kappa_{\rm VV}$	$\kappa_{ m VV}$	$\kappa_{\lambda}, \kappa_{\rm VV}$	$\kappa_{\lambda}, \kappa_{\rm VV}$
$N_{ m b}$	$N_{\rm b} \ge 3$	_	$N_{\rm b} \ge 3$	—	$N_{b} = 3$ $N_{b} = 4$	$N_{\rm b}=4$
$D_{b\overline{b},1} \times D_{b\overline{b},2}$	—	HP, LP	-	HP, LP	_	
SR, CR	SR+CR	SR+CR	SR+CR	SR+CR	SR, CR	SR
SB	$\kappa_{\lambda} + \kappa_{ m VV}$	HP, LP	$\kappa_{\lambda} + \kappa_{ m VV}$	HP, LP	$N_{b} = 3$ $N_{b} = 4$	—
tī CR	—	—	_	—	One	
Year split	Per year	Per year	Per year	Per year	Combined	Per year
Total regions	9	12	9	12	11	6

• Constraint on $\kappa_{\rm vv}$:

- □ Observed (expected): $-12.2(-7.2) < \kappa_{VV} < 13.5$ (8.9)
- **Constraint on** κ_v :
 - □ Observed (expected): $-3.7(-3.1) < k_{\lambda} < 3.8 (3.1)$