

Precise SMEFT predictions for di-Higgs production

Higgs Physics: Part 2, Thursday \sim 4:12 pm

Jannis Lang mainly based on [2204.13045] with Gudrun Heinrich and Ludovic Scyboz | May 25, 2023

INSTITUTE FOR THEORETICAL PHYSICS

What do we mean by "precise SMEFT predictions"?

Jannis Lang - Precise SMEFT in hh production

.

Benchmark study

Power counting and \mathcal{O}_{tG}

Summary

May 25, 2023

What do we mean by "precise SMEFT predictions"?

- Higher order terms in (defining) EFT expansion parameter
- Only dim-6 operators considered (leading order in Λ^{-2})
- Assigning additional hierarchy to EFT Wilson coefficients (UV assumption)
- Stringent Flavor assumption ($m_t := 0$, except m_t), \rightarrow differentiating potentially tree- with strictly loop-induced operators (implicit loop factor in Wilson coefficient)

0.

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} rac{\mathcal{C}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \mathcal{O}\left(\Lambda^{-4}
ight)$$

 $U_{l}(3) \times U_{e}(3) \times U_{O}(2) \times U_{t}(2) \times U_{d}(3)$

Two bottom-up EFT systematics: SMEFT vs. HEFT

SMEFT: Linear Higgs sector: light Higgs contained in EW doublet field $\phi(x)$

• Canonical counting, truncate expansion at Λ^{-2} (only CP even operators)

$$\mathcal{L}_{SMEFT}^{(Warsaw)} \supset \frac{C_{H\Box}}{\Lambda^{2}} \left(\phi^{\dagger} \phi \right) \Box \left(\phi^{\dagger} \phi \right) + \frac{C_{HD}}{\Lambda^{2}} \left(\phi^{\dagger} D_{\mu} \phi \right) \left(\phi^{\dagger} D^{\mu} \phi \right) + \frac{C_{H}}{\Lambda^{2}} \left(\phi^{\dagger} \phi \right)^{3} + \frac{C_{uH}}{\Lambda^{2}} \left(\left(\phi^{\dagger} \phi \right) \bar{q}_{L} \tilde{\phi} t_{R} + \text{h.c.} \right) + \frac{C_{HG}}{\Lambda^{2}} \left(\phi^{\dagger} \phi \right) G_{\mu\nu}^{a} G^{a \ \mu\nu} + \frac{C_{uG}}{\Lambda^{2}} \left(\bar{q}_{L} \sigma^{\mu\nu} T^{a} G_{\mu\nu}^{a} \tilde{\phi} t_{R} + \text{h.c.} \right)$$

- **HEFT**: Non-linear theory (EW χ L), motivation as analogue to chiral pert. theory
 - Light Higgs is EW gauge singlet
 - Expansion in $\frac{f^2}{\Lambda^2} \sim \frac{1}{16\pi^2}$ (\Rightarrow loop counting)

$$\mathcal{L}_{\textit{HEFT}} \supset \underbrace{-m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \overline{t}t - c_{\textit{hhhh}} \frac{m_h^2}{2v} h^3}_{\subset \mathcal{L}_{\textit{HEFT}}^{LO}} + \underbrace{\frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) G_{\mu\nu}^a G^{a \ \mu\nu}}_{\subset \mathcal{L}_{\textit{HEFT}}^{NLO}}$$

 \Rightarrow Classically non-renormalisable, but consistent if truncations are considered at each step!

subdominant (UV assumption) \rightarrow last part

Two bottom-up EFT systematics: SMEFT vs. HEFT

SMEFT:

$$\mathcal{L}_{SMEFT}^{(Warsaw)} \supset \frac{C_{H\Box}}{\Lambda^2} \left(\phi^{\dagger} \phi \right) \Box \left(\phi^{\dagger} \phi \right) + \frac{C_{HD}}{\Lambda^2} \left(\phi^{\dagger} D_{\mu} \phi \right) \left(\phi^{\dagger} D^{\mu} \phi \right) + \frac{C_{H}}{\Lambda^2} \left(\phi^{\dagger} \phi \right)^3 \\
+ \frac{C_{uH}}{\Lambda^2} \left(\left(\phi^{\dagger} \phi \right) \bar{q}_L \tilde{\phi} t_R + \text{h.c.} \right) + \frac{C_{HG}}{\Lambda^2} \left(\phi^{\dagger} \phi \right) G^a_{\mu\nu} G^{a \ \mu\nu}$$

HEFT:

Ci

$$\mathcal{L}_{\textit{HEFT}} \supset - m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \overline{t}t - c_{\textit{hhh}} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{\textit{ggh}} \frac{h}{v} + c_{\textit{gghh}} \frac{h^2}{v^2} \right) G^a_{\mu\nu} G^{a\ \mu\nu}$$

Naive translation SMEFT ↔ HEFT after field redefinition up to $\mathcal{O}(\Lambda^{-2})$ in Lagrangian $(C_{H kin} = C_{H\Box} - 4C_{HD})$

However, formally:

$$\sim \mathcal{O}(1) ext{ possible } \leftrightarrow ext{ } rac{E^2}{\Lambda^2} C_i \ll 1$$

 \Rightarrow Not generally applicable in practical calculations (fits, bounds, ...)

SMEFT and HEFT Status of EFT calculations in $qq \rightarrow hh$ 0000 Jannis Lang - Precise SMEFT in hh production

HFFT Warsaw $1 - 2 \frac{v^2}{\Lambda^2} \frac{v^2}{m^2} C_H + 3 \frac{v^2}{\Lambda^2} C_{H,kin}$ Chhh $\frac{v^2}{\Lambda^2} C_{H,\rm kin} -$ C_t $-\frac{v^2}{\Lambda^2}\frac{3v}{2\sqrt{2}m_t}$ Ctt 8π CHG Caah $\frac{v^2}{\Lambda^2} \frac{4\pi}{\alpha_s(\mu)}$ C_{HG} **C**gghh

Benchmark study

Power counting and \mathcal{O}_{tG}

• •

Summary

SMEFT truncation

⇒ Double operator insertion same order as (neglected) dimension 8 operators (and field redefinition)!

 \Rightarrow In HEFT the complete anomalous coupling enters at each vertex with no additional truncation

SMEFT truncation of cross section

$\sigma \simeq \left\{ \right.$	$\sigma_{SM} + \sigma_{SM imes \dim 6}$	Truncation at leading order of expansion of (a) powers in Λ^{-2} of cross section \Rightarrow applicable choice			
	$\sigma_{(SM+\dim 6) imes(SM+\dim 6)}$	Truncation at leading order of expansion of (b) powers in Λ^{-2} of amplitude \Rightarrow applicable choice			
	$\sigma_{(SM+\dim 6) \times (SM+\dim 6)} + \sigma_{SM \times \dim 6^2}$	(c) Truncate cross section at $\mathcal{O}\left(\Lambda^{-4}\right)$ from all dim6 operator insertions (ambiguous definition)			
	$\sigma_{(SM+\dim 6+\dim 6^2)\times(SM+\dim 6+\dim 6^2)}$	(d) Complete insertion, naive translation SMEFT \leftrightarrow HEFT			

- Truncation (a) formally most consistent, however, negative (differential) cross section can appear for too large Wilson coefficients
- \Rightarrow Perform analysis for truncation (a) and (b) separately!

NLO cross section heatmaps in SMEFT

Generated at $\sqrt{s} = 13$ TeV with $\Lambda = 1$ TeV

- Large area of negative cross section for truncation (a)
- Flat directions differ substantially

Non-trivial shape for HEFT-like option (d)

Summary O 8/18

Public implementations

HTL = Heavy top limit ($m_t \rightarrow \infty$)

I O and NI O OCD HTL HPATE.

[Gröber,Mühlleitner,Spira,Streicher '15]

Full m_t NLO QCD POWHEG-BOX-V2/ggHH

[Heinrich.Jones.Kerner.Luisoni.Vrvonidou '17] [Buchalla,Capozi,Celis,Heinrich,Scyboz '18] [Heinrich, Jones, Kerner, Luisoni, Scyboz '19] [Heinrich.Jones.Kerner.Scyboz '20] \leftarrow

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke '16]

Non-public state-of-the-art NNLO' (HTL NNLO, full m, NLO)

SMEFT

HEFT

- I O and NLO QCD HTL HPAIR [Gröber.Mühlleitner.Spira.Streicher '15]
 - LO (1-loop) including chromo-magnetic operator SMEFT@NLO + MG5_aMC@NLO
- LO including chromo-magnetic operator
- SMEETsim + MG5 aMC@NLO

SMEET and HEET Status of EFT calculations in $aa \rightarrow hh$

Jannis Lang - Precise SMEFT in hh production

[Degrande.Durieux.Maltoni.Mimasu.Vrvonidou.Zhang '20]

[Brivio.Jiang.Trott '17] [Brivio '20]

[Heinrich.JL.Scvboz '22]

Benchmark study

Power counting and \mathcal{O}_{tG} May 25, 2023

[de Florian, Fabre, Heinrich, Mazitelli, Scyboz '21]

Summary 9/18

Naive benchmark translation

Consider HEFT benchmark points with following characteristic m_{hh} shapes

- Benchmark 1*: enhanced low m_{hh} region
- Benchmark 6*: close-by double peaks or shoulder left

benchmark	Chhh		•	•		_			•	C	C	C	C	۸
(* = modified)		Ct	a Cu	Cggh	Cgghh	U <i>H</i> ,kin	Сн	C_{uH}	СнG	~				
SM	1	1	0	0	0	0	0	0	0	1 TeV				
1*	5.105	1.1	0	0	0	4.95	-6.81	3.28	0	1 TeV				
6*	-0.684	0.9	$-\frac{1}{6}$	0.5	0.25	0.561	3.80	2.20	0.0387	1 TeV				

[Capozi, Heinrich '19] [https://cds.cern.ch/record/2843280]

SMEFT expansion based on $E^2 \frac{C_i}{\Lambda^2} \ll 1$ justified? \Rightarrow

 C_{HG} obtained using $lpha_s(m_Z)=0.118$

oo

SMEFT and HEFT

Status of EFT calculations in $gg \rightarrow hh$

Benchmark study •000 Power counting and \mathcal{O}_{tG}

May 25, 2023

Naive benchmark translation

 \Rightarrow SMEFT expansion based on $E^2 \frac{C_i}{\Lambda^2} \ll 1$ justified?

Status of EFT calculations in $qq \rightarrow hh$

Jannis Lang - Precise SMEFT in hh production

SMEFT and HEFT

Benchmark study •000 Power counting and $\mathcal{O}_{\textit{tG}}$ 0000

Summary O

May 25, 2023

Invariant mass distributions at NLO QCD ($\sqrt{s} = 13$ TeV)

Truncation (a): negative cross sections

- Shape approaches SM for increasing Λ
- \Rightarrow Valid HEFT point invalid in SMEFT after direct translation

Intro 00	SMEFT and HEFT	Status of EFT calculations in $gg \rightarrow hh$	Benchmark study	Power counting and \mathcal{O}_{tG}	Summary O
Jannis Lang – I	Precise SMEFT in hh production			May 25, 2023	11/18

Invariant mass distributions at NLO QCD ($\sqrt{s} = 13$ TeV)

No negative cross section

• Shape indistinguishable from SM for $\Lambda = 4$ TeV within scale uncertainties

No shoulder left

ntro	SMEFT and HEFT	Status of
20	00000	0

Status of EFT calculations in $gg \rightarrow hh$

Benchmark study

Power counting and \mathcal{O}_{tG} 0000

May 25, 2023

Summary 0 12/18

Jannis Lang - Precise SMEFT in hh production

Estimating theory uncertainties

$$\Delta \sigma \sim \frac{+\Delta_{\rm scale +}}{-\Delta_{\rm scale -}} + \frac{+\Delta_{m_l}}{-\Delta_{m_l}} \frac{\pm \Delta_{\rm num. grid}}{\pm \Delta_{\rm num. grid}} (\pm \Delta_{\rm EFT \ trunc.}) \pm \Delta_{\rm PDF+\alpha_s} \pm \Delta_{\rm EW}$$

- Δ_{EW}: Full NLO EW unknown, only partial results of top Yukawa [Davies,Mishima,Schönwald,Steinhauser,Zhang '22] [Mühlleitner,Schlenk,Spira '22]
- $\Delta_{\text{PDF}+\alpha_s} \approx 3\%$ ($\sqrt{s} = 13 \text{ TeV}$): B.I. NNLO HTL and employing PDF4LHCNNLO [twiki *hh* cross group] stable for c_{hhh} variation, but might rise if tail enhanced
- $\Delta_{\text{EFT trunc.}}$: No quantitative prescription, qualitative observation of truncation options
- $\Delta_{\text{scale }\pm}$: Determined by 7-point variation of μ_R , $\mu_F = \{0.5, 1, 2\} \cdot \mu_0$ $\mathcal{O}(15\%)$ for NLO QCD SM, 15 - 20% for NLO QCD SMEFT truncation (b) benchmark 1*& 6*
- Δ_{m_l scheme ±}: In principle needs determination for each point in EFT parameter space! (not yet available) [Baglio et al '18] [Baglio et al '20] [Baglio et al '20]
- Anum. grid: Numerical uncertainty of grids for virtual contribution, not covered by Monte Carlo statistical uncertainty of POWHEG!

Loop counting in SMEFT ("weak" UV assumption)

Assuming UV is renormalisable QFT leads to: [Arzt, Einhorn, Wudka '94] [Buchalla, Heinrich, Müller-Salditt, Pandler '22] (κ generic weak coupling, $d_{\chi}(\partial, \bar{\psi}\psi, \kappa) = 1$)

 \Rightarrow Chromomagnetic operator enters at same order as 2-loop 4-fermion operator contribution:

Effects of chromomagnetic operator (PRELIMINARY)

 SM with C_{tG} variation using O (Λ⁻²) constraints from [SMEFiT Collaboration, Ethier et al '21]:

C_{tG}		
individual	marginalised	
<i>g</i> s [0.007, 0.111]	<i>g</i> _s [-0.127, 0.403]	

Better constrained by other processes

IntroSMEFT and HEFTStatus of EFT calculations in $gg \rightarrow hh$ Benchmark studyPower counting and \mathcal{O}_{tG} Summary000000000000Jannis Lang – Precise SMEFT in *hh* productionMay 25, 202315/18

Effects of chromomagnetic operator (PRELIMINARY)

 SM with C_{tG} variation using O (Λ⁻²) constraints from [SMEFiT Collaboration, Ethier et al '21]:

C_{tG}		
individual	marginalised	
<i>gs</i> [0.007, 0.111]	<i>g</i> _s [-0.127, 0.403]	

Better constrained by other processes

Intro 00	SMEFT and HEFT	Status of EFT calculations in $gg ightarrow hh$	Benchmark study	Power counting and \mathcal{O}_{tG}	Summa o
Jannis La	ng – Precise SMEFT in hh produ	iction		May 25, 2023	16/18

Effects of chromomagnetic operator (PRELIMINARY)

 SM with C_{tG} variation using O (Λ⁻²) constraints from [SMEFiT Collaboration, Ethier et al '21]:

C_{tG}		
individual	marginalised	
<i>gs</i> [0.007, 0.111]	<i>g</i> _s [-0.127, 0.403]	

Better constrained by other processes

 Intro
 SMEFT and HEFT
 Status of EFT calculations in $gg \rightarrow hh$ Benchmark study
 Power counting and \mathcal{O}_{tG} Summary

 00
 0000
 0
 0000
 0
 0
 0
 0

 Jannis Lang – Precise SMEFT in hh production
 May 25, 2023
 17/18

Summary

- Status of SMEFT precision in di-Higgs (ggF)
- SMEFT and HEFT both valid EFT approaches based on different assumptions
- BM study: Naive translation from HEFT \rightarrow SMEFT can lead out of validity of $\frac{1}{\Lambda^2}$ expansion
- \Rightarrow We advocate to study both EFT representations separately
- More information about this project: [Heinrich,JL,Scyboz '22]
- More information about EFT in Higgs pair production: [https://cds.cern.ch/record/2843280]
- ⇒ In progress: Inclusion of chromo-magnetic and 4-fermion operator contributions, RGE evolution of Wilson coefficients (expected to be relevant, see e.g. [2212.05067] [2109.02987]...)
- \Rightarrow Further outlook: y_b effects and EW corrections when SM results are available, ...

m_t renormalisation scheme uncertainty

[Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '18] [Baglio,Campanario,Glaus,Mühlleitner,Ronca,Spira,Streicher '20] [Baglio,Campanario,Glaus,Mühlleitner,Ronca,Spira '20]

- Prediction depends on *m_t* scheme (on-shell vs. *MS* with varying scale)
- Uncertainty sensitive to choice of $c_{hhh} = \kappa_{\lambda}$
- Sensitivity to variations of c_t, c_{tt} expected

Uncertainties • O Jannis Lang – Precise SMEFT in *hh* production

EFT systematics: canonical vs. loop

ggHH_SMEFT implementation

HEFT benchmarks

May 25, 2023

Numerical grids uncertainty

- Low (and high) m_{hh} region very sparsely populated in virtual grids, due to small contribution in SM
- $\Rightarrow O(12\%)$ uncertainty for SM in first bin not represented by Monte Carlo statistical uncertainty in POWHEG
- \Rightarrow Uncertainty much worse for scenarios with enhanced low m_{hh} region

Uncertainties ○●	EFT systematics: canonical vs. loop o	ggHH_SMEFT implementation		HEFT benchmarks O
Jannis Lang - Precise SMEFT in hh p	roduction		May 25, 2023	20/18

EFT systematics: canonical vs. loop counting

[Buchalla,Catà,Krause 14']

• Loop counting in columns, valid if $\xi \sim 1$

Uncertainties EFT systematics: canonical vs. loop

ggHH_SMEFT implementation

HEFT benchmarks

May 25, 2023

Amplitude evaluation in $ggHH_SMEFT$

$$\mathcal{M}_{gg
ightarrow hh}=\epsilon(p_1)_{\mu}\epsilon(p_2)_{
u}\left(\mathcal{F}_1\cdot\mathcal{T}_1^{\mu
u}+\mathcal{F}_2\cdot\mathcal{T}_2^{\mu
u}
ight)$$
 [Glover,van der Bij '87]

Born: Analytic expressions for form factors \mathcal{F}_1 and \mathcal{F}_2 (tree and 1-loop contributions)

Real: $|\mathcal{M}_{gg \to hhg}|^2$, $|\mathcal{M}_{qg \to hhq}|^2$, $|\mathcal{M}_{q\bar{q} \to hhg}|^2$ and crossings evaluated using (private) modified version of **GoSam** 1-loop ME generator

Virtual: 2-loop diagrams in HEFT are similar to SM \Rightarrow reweighting HEFT virtuals are available as function of 23 grids a_i

$$\begin{split} |\mathcal{M}_{gg \rightarrow hh}^{\textit{NLO}}|^2 = & a_1 \cdot c_t^4 + a_2 \cdot c_{tt}^2 + a_3 \cdot c_t^2 c_{hhh}^2 + a_4 \cdot c_{ggh}^2 c_{hhh}^2 + a_5 \cdot c_{gghh}^2 + a_6 \cdot c_{tt} c_t^2 + a_7 \cdot c_t^3 c_{hhh} \\ + & a_8 \cdot c_{tt} c_t c_{hhh} + a_9 \cdot c_{tt} c_{ggh} c_{hhh} + a_{10} \cdot c_{tt} c_{gghh} + a_{11} \cdot c_t^2 c_{ggh} c_{hhh} + a_{12} \cdot c_t^2 c_{gghh} \\ + & a_{13} \cdot c_t c_{hhh}^2 c_{ggh} + a_{14} \cdot c_t c_{hhh} c_{gghh} + a_{15} \cdot c_{ggh} c_{hhh} c_{gghh} + a_{16} \cdot c_t^3 c_{ggh} \\ + & a_{17} \cdot c_t c_{tt} c_{ggh} + a_{18} \cdot c_t c_{ggh}^2 c_{hhh} + a_{19} \cdot c_t c_{ggh} c_{gghh} + a_{20} \cdot c_t^2 c_{ggh}^2 \\ + & a_{21} \cdot c_{tt} c_{ggh}^2 + a_{22} \cdot c_{ggh}^3 c_{hhh} + a_{23} \cdot c_{ggh}^2 c_{gghh} \end{split}$$

⇒ Grids can be directly reused for SMEFT (considering translation and truncation) up to counter terms and special treatment for truncation (b), where additional 1-loop contributions are added

Uncertainties	EFT systematics: canonical vs. loop	ggHH_SMEFT implementation		HEFT benchmarks
00	o	●○		O
Jannis Lang - Precise SMEFT in hh pre	oduction		May 25, 2023	22/18

Virtual grids for ggHH_SMEFT

Split matrix in kinematic part times coupling coefficient for HEFT and SMEFT

$$\begin{split} \mathcal{M}_{LO} &:= m_1 \cdot c_t^2 + m_2 \cdot c_t c_{hhh} + m_3 \cdot c_{tt} + m_4 \cdot c_g c_{hhh} + m_5 \cdot c_{gg} \\ &= m_1 + m_2 + \frac{1}{\Lambda^2} \left(2m_1 \cdot C_t' + m_2 \cdot (C_t' + C_{hhh}') + m_3 \cdot C_{tt}' + m_4 \cdot C_g' + m_5 \cdot C_{gg}' \right) + \frac{1}{\Lambda^4} \left(m_1 \cdot C_t'^2 + m_2 \cdot C_t' C_{hhh}' \right) \\ \mathcal{M}_{NLO} &:= \mathcal{M}_1 \cdot c_t^2 + \mathcal{M}_2 \cdot c_t c_{hhh} + \mathcal{M}_3 \cdot c_{tt} + \mathcal{M}_4 \cdot c_g c_{hhh} + \mathcal{M}_5 \cdot c_{gg} + \mathcal{M}_6 \cdot c_g^2 + \mathcal{M}_7 \cdot c_g c_t \\ &= \mathcal{M}_1 + \mathcal{M}_2 + \frac{1}{\Lambda^2} \left(2\mathcal{M}_1 \cdot C_t' + \mathcal{M}_2 \cdot (C_t' + C_{hhh}') + \mathcal{M}_3 \cdot C_{tt}' + \mathcal{M}_4 \cdot C_g' + \mathcal{M}_5 \cdot C_{gg}' + \mathcal{M}_7 \cdot C_g' \right) \\ &+ \frac{1}{\Lambda^4} \left(\mathcal{M}_1 \cdot C_t'^2 + \mathcal{M}_2 \cdot C_t' C_{hhh}' + \mathcal{M}_6 \cdot C_g'^2 + \mathcal{M}_7 \cdot C_g' C_t' \right) \end{split}$$

The virtual grids, given as kinematic coefficients a_i of the squared matrix element

$$\begin{split} \left|\mathcal{M}_{\textit{NLO}}\right|^2 = & a_1 \cdot c_t^4 + a_2 \cdot c_t^2 + a_3 \cdot c_t^2 c_{\textit{hhh}}^2 + a_4 \cdot c_{\textit{ggh}}^2 c_{\textit{hhh}}^2 + a_5 \cdot c_{\textit{gghh}}^2 + a_6 \cdot c_{tt} c_t^2 + a_7 \cdot c_t^3 c_{\textit{hhh}} + a_8 \cdot c_{tt} c_t c_{\textit{hhh}} + a_9 \cdot c_{tt} c_{\textit{ggh}} c_{\textit{hhh}} + a_{10} \cdot c_{tt} c_{\textit{gghh}} + a_{11} \cdot c_t^2 c_{\textit{ggh}} c_{\textit{hhh}} + a_{12} \cdot c_t^2 c_{\textit{gghh}} + a_{13} \cdot c_{t} c_{\textit{hhh}}^2 c_{\textit{ggh}} + a_{14} \cdot c_{t} c_{\textit{hhh}} c_{\textit{gghh}} + a_{15} \cdot c_t^2 c_{\textit{gghh}} + a_{16} \cdot c_t^3 c_{\textit{$$

can be understood as combinations of $m_i \times M_i$ obtained from $\mathcal{M}_{I,O} \times \mathcal{M}_{NI,O}$. After rearrangement, the squared matrix elements entering the truncated cross sections in SMEFT (slide 7) are expressed in terms of the same ai, except for truncation (b), where

$$\Delta \sigma_{\text{(b)}} = m_2 \times M_4 \cdot \frac{C'_{ggh}(C'_{hhh} - C'_t)}{\Lambda^4} + m_4 \times M_7 \frac{C'_{ggh}}{\Lambda^4}$$

needs to be added

Uncertainties 00	EFT systematics: canonical vs. loop	ggHH_SMEFT implementation \bigcirc		HEFT benchmarks O
Jannis Lang - Precise SMEFT in	hh production		May 25, 2023	23/18

Jannis Lang – Precise SMEFT in hh production

Updated HEFT benchmarks

[https://cds.cern.ch/record/2843280]

benchmark	C _{hhh}	Ct	C _{tt}	C _{ggh}	C _{gghh}
SM	1	1	0	0	0
1*	5.105	1.1	0	0	0
2*	6.842	1.033	$\frac{1}{6}$	$-\frac{1}{3}$	0
3	2.21	1.05	$-\frac{1}{3}$	0.5	0.5
4*	2.79	0.9	$-\frac{1}{6}$	$-\frac{1}{3}$	$-\frac{1}{2}$
5	3.95	1.17	$-\frac{1}{3}$	<u>1</u> 6	$-\frac{1}{2}$
6*	-0.684	0.9	$-\frac{1}{6}$	0.5	0.25
7	-0.10	0.94	1	$\frac{1}{6}$	$-\frac{1}{6}$

- Shape clusters defined using unsupervised ML
- Benchmarks chosen with clear shape features and satisfying experimental constraints
- * denotes updated benchmark point, new constraints: $0.83 \le c_t \le 1.17$ (and $|c_{tt}| \le 0.05$ for 1*)

EFT systematics: canonical vs. loop

Uncertainties