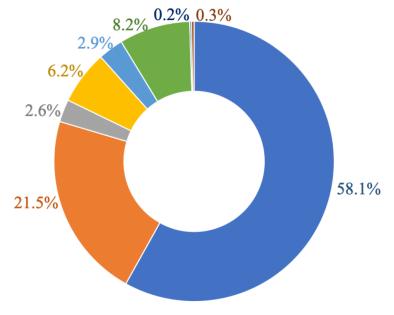


Exotic production and decays of the 125 GeV Higgs - ATLAS

Rocky Bala Garg

Stanford University

On Behalf of the ATLAS Collaboration


Overview: Why is Higgs everyone's favorite?

- Since its discovery in 2012, Higgs has caught everyone's attention
- It has a unique place in the Standard Model (SM) family
- And may have potential links outside of the family

Higgs A puzzle that fits perfectly with Standard Model but may connect to other dimensions

Higgs total width $\Gamma_{ m H}$

From <u>CERN Yellow Report</u>: 4.1±2.3 MeV

Latest measurement (2304.01532): $4.5^{+3.3}_{-2.5}$ MeV

Higher decay width \rightarrow Potential Higgs decays into new states

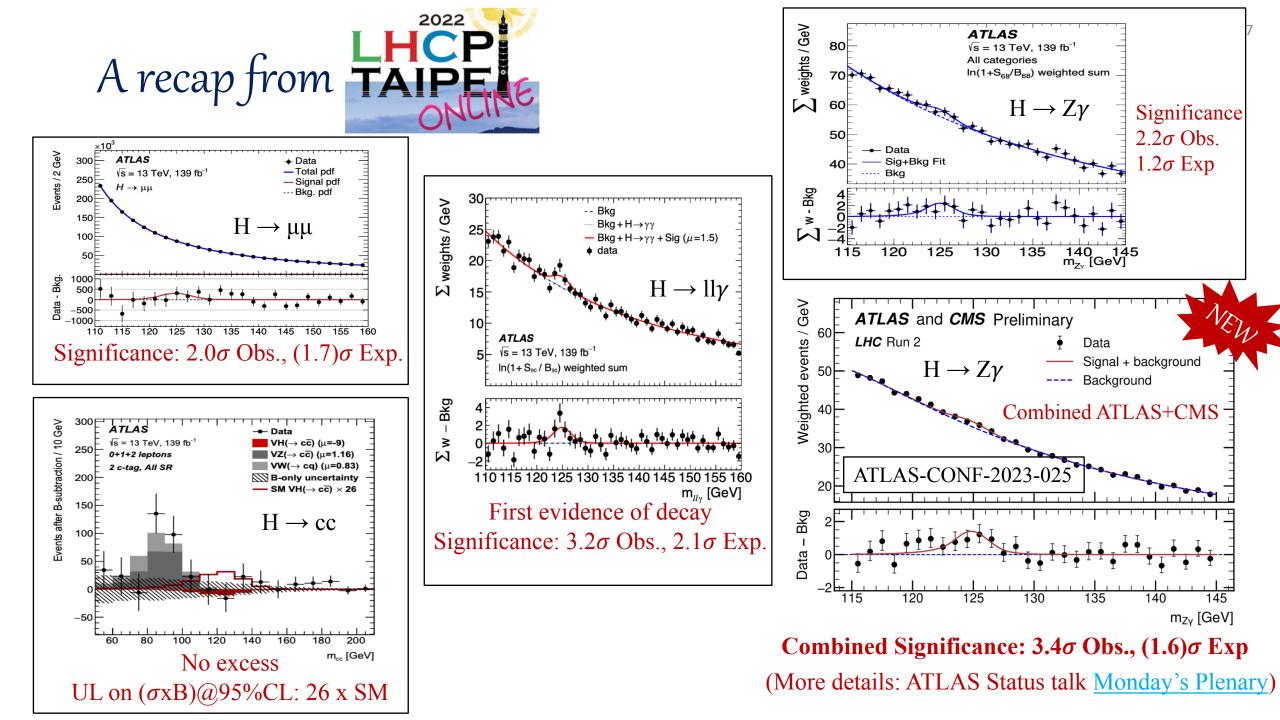
Overview: Why is Higgs everyone's favorite?

Rich Experimental Program

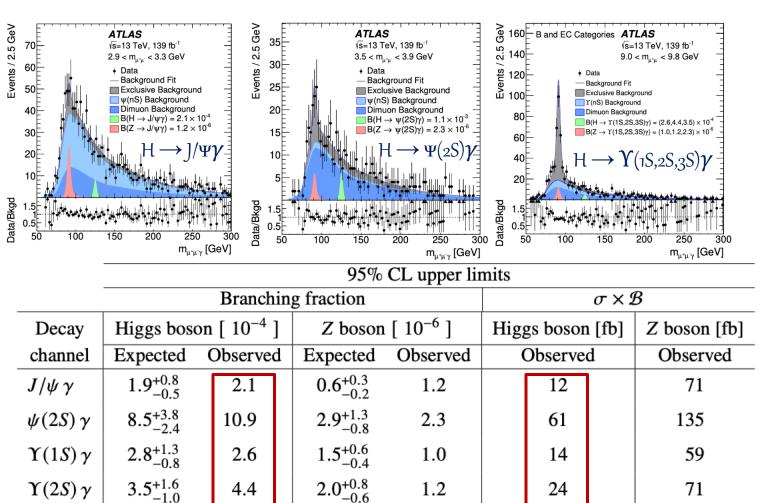
Precise measurement of Higgs couplings to SM particles

Search for additional Higgs-like states

And the topic of this talk: Search for "exotic" production/decays of SM Higgs Exotic production/decay of SM Higgs: Various manifestations


Exotic Higgs decays in rare SM particles

Exotic Higgs decays in new BSM¹ final states


SM Higgs production in association with new exotic final states

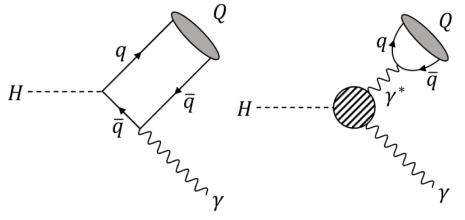
¹Beyond the Standard Model

Exotic Higgs decays in rare SM particles

 $H \longrightarrow J/\Psi + \gamma \text{ or } \Psi(2S) + \gamma \text{ or } \Upsilon(1S, 2S, 3S) + \gamma \longrightarrow \mu^+ \mu^- \gamma$

 $1.9^{+0.8}_{-0.5}$

2.3

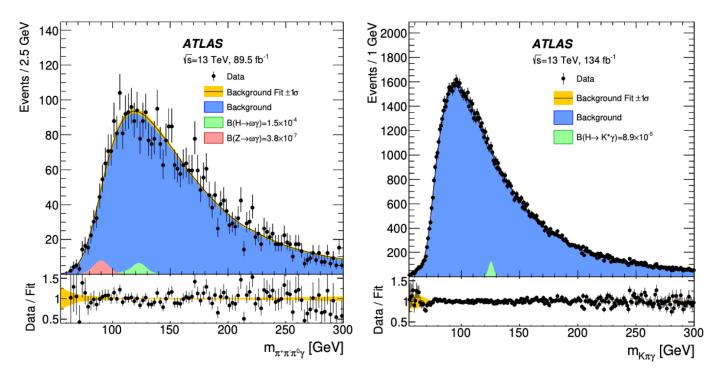

19

135

 $3.1^{+1.4}_{-0.9}$

3.5

 $\Upsilon(3S)\gamma$

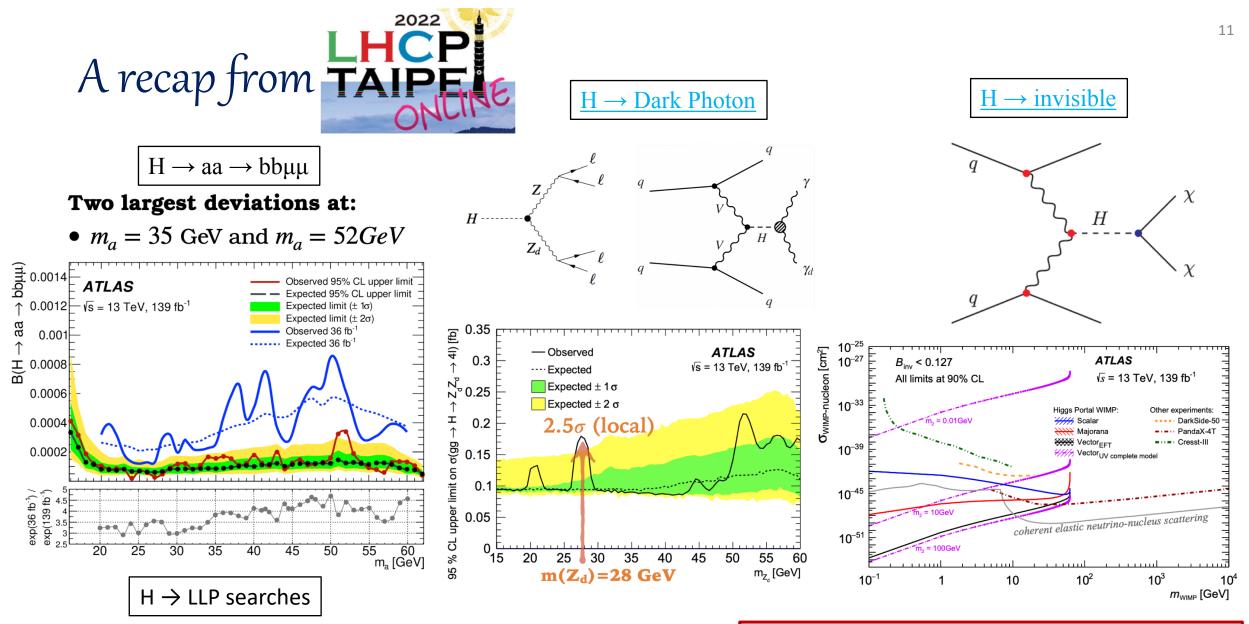

arXiv: 2208.03122

- $H \rightarrow J/\Psi + \gamma$ or $\Psi(2S) + \gamma$: allow access to the charm-quark Yukawa coupling
- H → Y(1S,2S,3S)+γ: provide information about the bottom-quark coupling to the Higgs boson

No Significant excess over SM expectation

$H/Z \rightarrow \omega \gamma \rightarrow \pi^+ \pi^- \pi^0 \gamma$ or $H/Z \rightarrow k^* \gamma \rightarrow k^+ \pi^- \gamma$

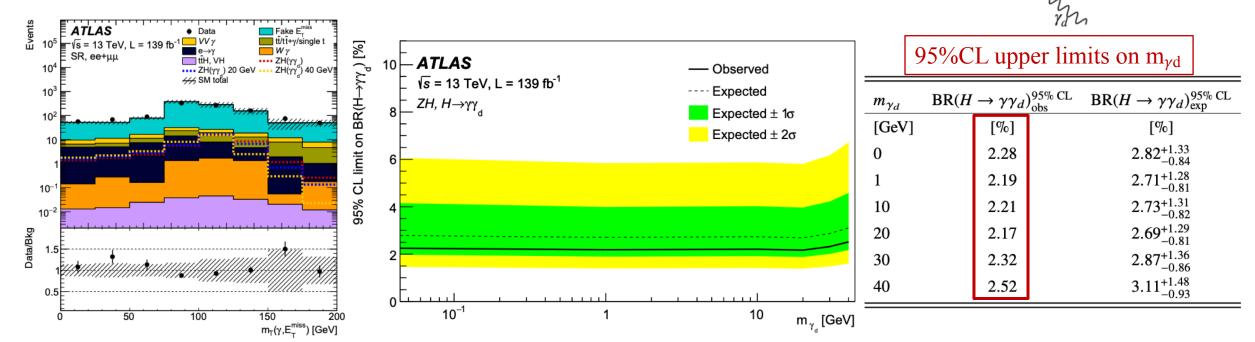
- These decays can probe the couplings of Higgs boson to 1st and 2nd generation quarks
- Theoretical SM branching fraction for $H \rightarrow \omega \gamma = (1.48 \pm 0.08) \times 10^{-6} (\underline{\text{Ref}})^{-6}$
- Observed UL@95%CL for $H \rightarrow \omega \gamma = 100 \text{ x SM}$


$\rightarrow k^+\pi^-\gamma$		q	M
H((Z)		Ī
nd		٩ ۲	~
			Lγ
-6 (<u>Ref</u>)		q	M
		- A	\sum_{a}
117	7)	ПБ γ*	9
H(x)	Ζ)γ		
		Z	
		J.	- v
95% CL upper limit		ing fracti	ons
Channel	95% CL u	ıpper limi	it
	Expected	Observe	ed
$H ightarrow \omega \gamma \ [10^{-4}]$	$3.0^{+1.2}_{-0.8}$	1.5	
$Z ightarrow \omega \gamma \; [10^{-7}]$	$5.7^{+2.3}_{-1.6}$	3.8	
$H \to K^* \gamma \ [10^{-5}]$	$12.2^{+4.9}_{-3.4}$	8.9	

arXiv: 2301.09938

No Significant excess over SM expectation

A A


Exotic Higgs decays in new BSM final states

Great benchmark and lots of ongoing efforts Dedicated ATLAS talk in <u>Monday's parallel session</u> by Mohsen Latest results on $H \rightarrow$ invisible combination: <u>Elliott's talk</u> in Thursday's Plenary

Higgs decay into dark matter particles $ZH \rightarrow ll\gamma\gamma_d$ where $l = e/\mu$

- Signal topologies with massless and massive dark photon are considered
- A boosted decision tree (BDT) has been used to distinguish signal events from SM background
- Fit is performed in the SR to the distribution of the BDT classifier response

arXiv: 2212.09649

 Z^*

 $\mathcal{T}_{g}^{\mathcal{T}}$

10000

 \sim

H

ത്ത

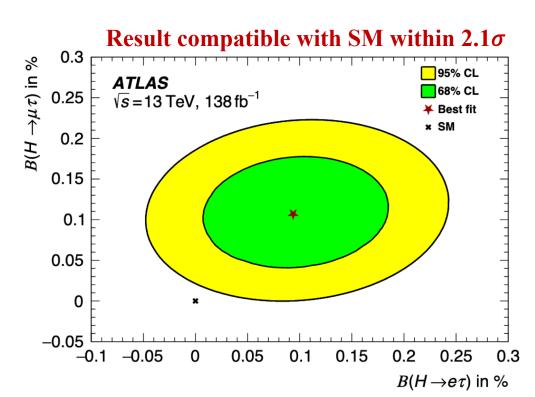
g

10000

Lepton-flavour violating decays of Higgs Boson

 $Y_{\ell\tau}$

 W^{\cdot}


 $\bar{\nu}_{\ell'}$

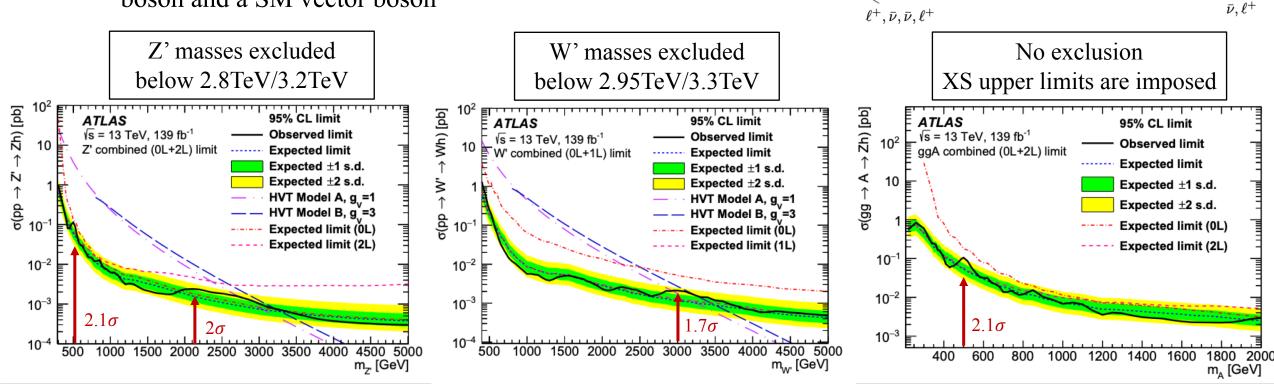
H

- Hadronic and leptonic decays of *τ*-lepton are studied → four distinct final states
- Three statistical analyses are performed:

 $H \rightarrow e \tau$ or $\mu \tau$

- Independent search for $H \rightarrow e\tau$ process, assuming $H \rightarrow \mu\tau$ signal to be zero
- Independent search for $H \rightarrow \mu \tau$ process, assuming $H \rightarrow e\tau$ signal to be zero
- Simultaneous determination of $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ signals
- Multivariate techniques like BDT and DNN are employed to achieve maximum separation between signal and background

 $Y_{\ell_{\tau}}$


H

arXiv:2302.05225

SM Higgs production in association with new exotic final states

Exotic production of SM Higgs in association with a vector boson $W'/Z'/A \rightarrow VH \rightarrow IIbb$ or $\checkmark \checkmark bb$ or $I \checkmark bb$ where $I = e/\mu$

- Search for new vector resonance in the mass range 300 GeV - 5 TeV
- New vector resonance decays into a SM Higgs boson and a SM vector boson

W', Z'

 W^{\pm}, Z

Around 2σ local excess in all cases at different mass points

15

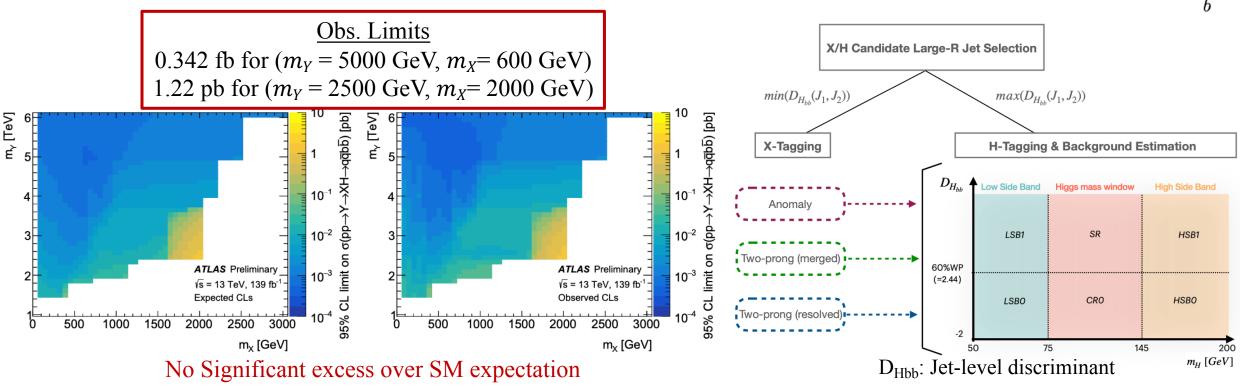
 ν, ℓ^-

arXiv:2207.00230

A

JULLUL

JULLE


 u, ℓ^-, ν, ℓ^-

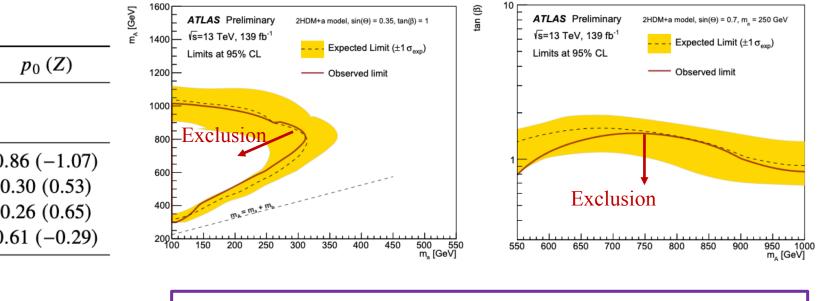
16

Exotic production of SM Higgs in association with a new particle

New heavy resonance, $Y \rightarrow XH \rightarrow qqbb$

- Fully hadronic final state with Higgs → bb and X → qq considered (though different possible decays of X)
- Highly boosted so jets from Higgs and X are collimated
- Anomaly detection based on VRNN (Variational Recurrent Neural Network) is used to define one Signal Region

Exotic production of SM Higgs in association with a dark matter candidate $A \rightarrow aH \rightarrow \tau \tau + E^{T}_{miss}$ (mono-H) • A: CP-ODD Higgs Boson


• First exploration of mono-H $\rightarrow \tau \tau$ signature with hadronically decaying τ s

 CL_b

- **y**: Dark matter particle
 - tanβ: Ratio of vacuum expectation values of two BSM Higgs

a: Mediator between SM and DM

Low_{m_A} SR					
$m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2}$					
[100, 250] GeV	0.08	10.7	$12.5^{+5.2}_{-3.5}$	0.27	0.86 (-1.07)
[250, 400] GeV	0.07	9.1	$7.6^{+3.1}_{-1.6}$ $8.9^{+3.4}_{-2.2}$	0.72	0.30 (0.53)
[400, 550] GeV	0.08	10.8	$8.9^{+3.4}_{-2.3}$	0.75	0.26 (0.65)
> 550 GeV	0.04	5.8	$8.9^{+2.6}_{-2.3}$ $6.0^{+2.6}_{-1.6}$	0.42	0.61 (-0.29)
$ \begin{array}{c} \text{High}_{m_A} \text{ SR} \\ m_{\text{T}}^{\tau_1} + m_{\text{T}}^{\tau_2} \end{array} $					
[400, 750] GeV	0.05	7.6	$8.8^{+3.1}_{-2.4}$	0.34	0.85 (-1.03)
> 750 GeV	0.04	5.4	$4.6^{+1.8}_{-0.8}$	0.67	0.34 (0.42)

Dark matter particle a^{τ^+} ppears as E^{T}_{miss}

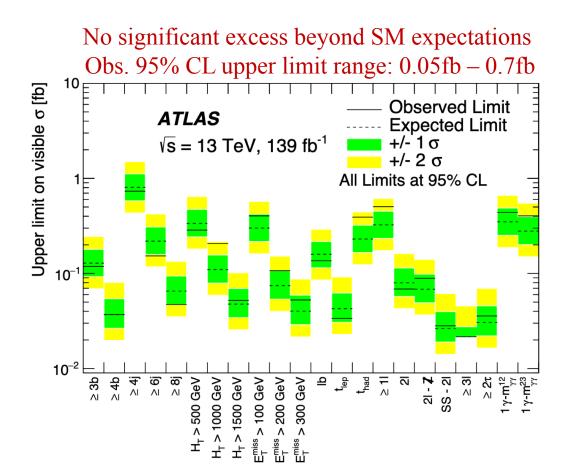
 $S_{\rm obs}^{95}$

 $\sigma_{\rm vis}$ [fb]

 $S_{\rm exp}^{95}$

Signal region

New results on SM Higgs exotic production: $X \rightarrow SH \rightarrow VV\tau\tau$ Details in ATLAS status talk: <u>Monday morning Plenary</u>


arXiv:2301.10486

18

New physics in final states with $H \longrightarrow \gamma \gamma$ decay Total 22 signal final states

- Decay of a BSM state produce Higgs boson along with other particles, defining different signal regions
- Selection criteria not orthogonal, an event can belong to multiple signal regions

Target	Region	Detector level	Particle level
Heavy	$\geq 3b$	$n_{b-\text{jet}} \ge 3,85\% \text{ WP}$	$n_{b-\text{jet}} \ge 3$
flavour	$\geq 4b$	$n_{b-\text{jet}} \ge 4,85\% \text{ WP}$	$n_{b-\text{iet}} \ge 4$
	≥4j	$n_{\rm jet} \ge 4, \eta_{\rm jet} < 2.5$	$n_{\rm jet} \ge 4, \eta_{\rm jet} < 2.5$
	≥6j	$n_{\text{jet}} \geq 6, \eta_{\text{jet}} < 2.5$	$n_{\rm jet}^{} \ge 6, \eta_{\rm jet} < 2.5$
High jet	≥8j	$n_{\text{jet}} \geq 8, \eta_{\text{jet}} < 2.5$	$n_{\text{jet}} \geq 8, \eta_{\text{jet}} < 2.5$
activity	$H_{\rm T} > 500 { m ~GeV}$	$H_{\rm T} > 500 {\rm GeV}$	$H_{\rm T} > 500 { m GeV}$
	$H_{\rm T} > 1000 { m ~GeV}$	$H_{\rm T} > 1000 { m ~GeV}$	$H_{\rm T} > 1000 {\rm ~GeV}$
	$H_{\rm T} > 1500 { m ~GeV}$	$H_{\rm T} > 1500 { m ~GeV}$	$H_{\rm T} > 1500 { m ~GeV}$
	$E_{\rm T}^{\rm miss}$ >100 GeV	$E_{\rm T}^{\rm miss} > 100 {\rm ~GeV}$	$E_{\rm T}^{\rm miss,tru} > 100 { m ~GeV}$
$E_{\rm T}^{\rm miss} = E_{\rm T}^{\rm miss} > 200$	$E_{\rm T}^{\rm miss}$ >200 GeV	$E_{\rm T}^{\rm miss} > 200 { m GeV}$	$E_{\rm T}^{\rm miss,tru} > 200 { m GeV}$
	$E_{\rm T}^{\rm miss}$ >300 GeV	$E_{\rm T}^{\rm miss}$ > 300 GeV	$E_{\rm T}^{\rm miss,tru} > 300 { m GeV}$
	łb	$n_{\ell=e,\mu} \ge 1, n_{b-\text{iet}} \ge 1,70\% \text{ WP}$	$n_{\ell=e,\mu} \ge 1, n_{b-\text{jet}} \ge 1$
Top t _{lep}	$n_{\ell=e,\mu} = 1, \ n_{\text{jet}} = n_{b\text{-jet}} = 1,$ 70% WP	$n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1$	
	t _{had}	$n_{\ell=e,\mu} = 0, n_{\text{jet}} = 3, n_{b\text{-jet}} = 1,$ 70% WP, BDT _{top} > 0.9	$n_{\ell=e,\mu} = 0, n_{\text{jet}} = 3, n_{b-\text{jet}} = 1$
	$\geq 1\ell$	$n_{\ell=e,\mu} \ge 1$	$n_{\ell=e,\mu} \ge 1$
2ℓ Lepton 2ℓ-Z SS-2ℓ	2ℓ	$ee, \mu\mu$, or $e\mu$	$ee, \mu\mu$, or $e\mu$
	$ee, \mu\mu, e\mu; m_{\ell\ell} - m_Z > 10 \text{GeV}$	$ee, \mu\mu, e\mu; m_{\ell\ell} - m_Z > 10 \text{GeV}$	
	for same-flavour leptons	for same-flavour leptons	
		<i>ee</i> , $\mu\mu$, or $e\mu$ with same charge	<i>ee</i> , $\mu\mu$, or $e\mu$ with same charge
	$\geq 3\ell$	$n_{\ell=e,\mu} \geq 3$	$n_{\ell=e,\mu} \geq 3$
	$\geq 2\tau$	$n_{ au, \text{had}} \ge 2$	$n_{\tau} \ge 2$
Photon	$1\gamma - m_{\gamma\gamma}^{12}$	$n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_1, γ_2	$n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_1, γ_2
$1\gamma - m_{\gamma\gamma}^{23}$		$n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_2, γ_3	$n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_2, γ_3

- Rich and exciting program for the search of exotic production and decay of Standard Model Higgs boson is on-going at ATLAS
- All the presented analyses are based on full Run2 data from ATLAS detector
- Several new Run2 results are in the pipeline
- Many more fascinating results with Run3 data

Stay tuned!!!!!!! Thank you for your attention!!