LHCP 2023

11th Large Hadron Collider Physics Conference Belgrade, 22-26 May, 2023

Higgs boson production in association with top quark at CMS

Clara Ramón Álvarez* (on behalf of the CMS Collaboration)

*Partially funded by "Programa Severo Ochoa"

GOBIERNO DEL PRINCIPADO DE ASTURIAS CONSEJERÍA DE CIENCIA, INNOVACIÓN Y UNIVERSIDAD

Universidad de Oviedo

Higgs boson production

At LHC **gg fusion is the dominant** H production mode - $\sigma_{H,ggF} \sim 49$ pb @ 13 TeV Top asociated production, much lower rates:

- $t\bar{t}H \sigma_{t\bar{t}H} \sim 0.5 \text{ pb} @ 13 \text{ TeV}$
- tH $\sigma_{tH} \sim 0.07 \text{ pb} @ 13 \text{ TeV}$

Challenging but interesting:

- Direct probe of top-Higgs Yukawa coupling
- $y_t \sim 1$ (largest in the SM)
- BSM $y_t = -1 \rightarrow \text{ constructive interference} \rightarrow \sigma_{tH} \sim 0.8 \text{ pb}$
- Probe EFT

Final states to study ttH+tH

• tH not yet observed

٠

- ttH recent updates: CP measurements, STXS studies
- Higgs Couplings and non-resonant HH Combination

Nature 607, 60-68 (2022)

Final states to study ttH+tH

Selection:

100 GeV < $m_{\gamma\gamma}$ < 180 GeV 2 high pT γ +additional jets and leptons **Two categories** depending on final state objects:

- Hadronic:
 - 0 Leptons $\& \ge 3$ Jet $\& \ge 1$ btag
- Leptonic: \geq 1 Lepton & \geq 1Jet
- MVA (BDT-bkg) in each category to separate signal from background
- Simultaneous maximum likelihood (ML) fit performed using the $m_{\gamma\gamma}$

Phys. Rev. Lett. 125, 061801

Results

First **observation** in a single H decay channel! Observed significance of 6.6 s.d. (4.7 s.d.)

$$\sigma_{t\bar{t}H}\mathcal{B}_{\gamma\gamma} = 1.56^{+0.34}_{-0.32} \text{ fb}$$
$$\mu_{t\bar{t}H} = 1.38^{+0.36}_{-0.29}$$

ttH $\rightarrow \gamma \gamma$: **CP Interpretation**

Kinematic info in $t\bar{t}H$ production is very rich, angular variables and reconstructed $t\bar{t}H$ mass sensitive to modification in the Htt coupling

MVA to reconstruct D0- operator

Fitting 12 categories: 2 (BDT-bkg) x 3 (D_{0-}) x 2 (final state)

• Yields parametrized using κ_t and $\tilde{\kappa_t}$ (ratio of the CP-even and CP-odd terms to SM expectation, respectively)

$$f_{CP} = \frac{|\tilde{\kappa}_t|^2}{|\tilde{\kappa}_t|^2 + |\kappa_t|^2} \qquad \qquad f_{CP}^{Htt} = 0.00 \pm 0.33 \\ |f_{CP}^{Htt}| < 0.67 @ 95\% CL$$

First CP measurement of Htt coupling

CP constrain dominated by statistical uncertainty Pure Pseudo Scalar **CP odd coupling excluded at 3.2 s.d.**

ttH $\rightarrow \gamma \gamma$ **STXS**

<u>JHEP 07, 27 (2021)</u>

STXS (Simplified template cross section) **approach**. Categories targeting all H production modes, in particular ttem and tH CMS

t \overline{t} **H:** 5 bins in p_T^H **tH:** 1 categroy

Selection: the one in previous slide + NN to discriminate $\ensuremath{t\bar{t}}\xspace H$ vs tH

Results

- First channel to perform ttH measurement differentially!
- Good agreement with SM
- Upper limit on the tH cross section is 14 (8 exp.) times the SM expectation

$ttH \rightarrow multileptons$

EPJC 81, 378 (2021)

Categorize events depending on the **lepton multiplicity** Dedicated **MVA to select isolated leptons** from H, W and τ Dedicated selection on each category. Using Jet and b-tagging multiplicities.

ttH → ml event classification

EPJC 81, 378 (2021)

- In each signal categories **Neural Network trained** to discriminate signal vs. background
- Dedicated **node to target** $t\bar{t}W$ in $2lss+0\tau$ category
- Further classification depending on flavor, b-tag multiplicity...

Simultaneous maximum likelihood fit in the signal region categories as well as the control regions

• $t\bar{t}W$ and $t\bar{t}Z$ signal strengths (μ) freely floated in the fit

ttH → ml results

EPJC 81, 378 (2021)

• Signal strengths in good agreement with SM

 $\mu_{t\bar{t}H} = 0.92^{+0.26}_{-0.23}$ observed (expected) significance: 4.7 (5.2) s.d. $\mu_{tH} = 5.7^{+2.8}_{-2.7}(stat.)^{+3.0}_{-3.0}(syst)$ observed (expected) significance: 1.4 (0.3) s.d.

• Study Top-Higgs (κ_t) and Higgs-W (κ_V) coupling: -0.9 < κ_t < -0.7 or 0.7 < κ_t < 1.1 at 95 % C.L.

ttH \rightarrow ml: CP interpretation

Nature combination

Summary

Two of the most challenging H production modes had been studied during **Run 2**:

- ttH observation in 2018!
- $t\bar{t}H$ observation in $\gamma\gamma$
- Have seen improvements on the control of backgrounds
- Differential measurements in some channels

The amount of data taken during Run 2 allowed us to study **Top-Higgs coupling**:

- Good agreement with SM
- CP interpretations

Still analyzing Run 2 dataset

Run 3 already started:

- increase statistic a factor of ~3!
- Work ongoing on how to **improve modelling** of $t\bar{t}W$ (H \rightarrow multilepton) and $t\bar{t}b\bar{b}(H\rightarrow b\bar{b})$.

ttH $\rightarrow 4\ell$

Use full Run 2 dataset **Selection:** 4 isolated leptons that are opposite sign and same flavour -> used to reconstruct the ZZ pair

STXS approach. Categories targeting all H production modes, in particular ttH (little sensitivitiy to tH), binned in pTH

Two categories depending on top deacy:

- Hadronic: \geq 4 Jets, \geq 1 btag, 0 additional leptons
- Leptonic: \geq 1 additional lepton

Two Dimesional fit to m4l and kinematic disceiminat sig. vs bkg

Results

	Expected	Observed
$\mu_{t\bar{t}H,tH}$	$1.00^{+1.23}_{-0.77} (\text{stat})^{+0.51}_{-0.06} (\text{syst})$	$0.17^{+0.88}_{-0.17}(m stat)^{+0.42}_{-0.00}(m syst)$

ttH $\rightarrow 4\ell$

16

ttH (ml) categories

ttH (ml) syst

Source	$\Delta\mu_{\rm t\bar{t}H}/\mu_{\rm t\bar{t}H}[\%]$	$\Delta\mu_{\rm tH}/\mu_{\rm tH}[\%]$	$\Delta\mu_{\rm t\bar{t}W}/\mu_{\rm t\bar{t}W}[\%]$	$\Delta \mu_{t\bar{t}Z}/\mu_{t\bar{t}Z}$ [%]
Trigger efficiency	2.3	8.1	1.2	1.9
e, μ reconstruction and identification efficiency	2.9	7.1	1.7	3.2
$\tau_{\rm h}$ identification efficiency	4.6	9.1	1.7	1.3
b tagging efficiency and mistag rate	3.6	13.6	1.3	2.9
Misidentified leptons and flips	6.0	36.8	2.6	1.4
Jet energy scale and resolution	3.4	8.3	1.1	1.2
MC sample and sideband statistical uncertainty	7.1	27.2	2.4	2.3
Theory-related sources affecting acceptance	4.6	18.2	2.0	4.2
and shape of distributions				
Normalization of MC-estimated processes	13.3	12.3	13.9	11.3
Integrated luminosity	2.2	4.6	1.8	3.1
Statistical uncertainty	20.9	48.0	5.9	5.8

ttH ($\gamma\gamma$) syst + STXS

Theoretical:

ttH normalization (QCD renormalization and factorisation scales)

Experimental: b quark and photon identification Jet energy scale and resolution Integrated luminosity

CP interpretation

Lagrangian can be expressed as a superposition of CP-even and a CP-odd terms

$$\mathcal{L}_{t\bar{t}H} = \frac{-y_t}{2} \bar{\psi}_t (\kappa_t + i\gamma_5 \tilde{\kappa_t}) \psi_t H$$

With:

- y_t the top-Higgs coupling
- κ_t ratio of the CP-even terms to SM expectation
- $\tilde{\kappa_t}$ ratio of the CP-odd terms to SM expectation

Defining α as the CP mixing angle:

- κ_t proportional to $\cos \alpha$
- $\widetilde{\kappa_t}$ proportional to $\sin \alpha$

Kinematic differences as well as cross-section changes expected depending on the CP scenario

tH cross section sensitive to the inverted top coupling scenario ($y_t = -y_t^{SM}$)

Scenario	α
Purely CP even	$lpha=0^\circ ext{ or } 180^\circ$
Purely CP odd	$\alpha = 90^{\circ}$
Mixed scenario	$\alpha \neq 0^{\circ}, \neq 90^{\circ}, \neq 180^{\circ}$

