Measurement of ttW and ttbb from ATLAS and CMS

Stergios Kazakos (MSU)

(on behalf of the ATLAS & CMS collaborations)

11th Large Hadron Collider Physics Conference

Motivation for detailed ttW and ttbb measurements

ttH-ML

LHCP 2023

26-05-23

- ttW and ttbb are quite important irreducible backgrounds in many measurements and BSM searches e.g.:
 - In the **ttH** measurement, gathering large interest as a direct probe of the top-Higgs Yukawa coupling.
 - In the **4-top** measurement, with a bit higher measured cross section than the SM.
- Additional motivation for the **ttW** & **ttbb** measurements:
 - Improve their overall uncertainty.
 - Challenging modelling, contribution often underestimated from MC.

Associated production of a W boson with a top-quark pair (ttW)

 \star NLO QCD processes increase the cross section up to 50%.

ttW is an asymmetric process due to the different u-, d-quark PDFs.

 \star Non-trivial modelling due to:

new channels opening up at higher orders,
large electroweak (EW) NLO corrections.

Stergios Kazakos

- \star Main bkg contributions in SRs:
 - tt w/ non-prompt ℓ , ttZ, VV, ttH
- \star Definition of signal depleted CRs to constrain the normalisation of VV, ttZ & some syst uncertainties.
- $\star \sigma_{t\bar{t}W}$ extracted from the fitted μ after a maximum likelihood Template Fit to data in CRs & SRs.

\star Events selection:

arXiv:2208.06485

Also presented by K.

W. Coldham on Wed!

- \Rightarrow 2 ℓ SS channel (semi-leptonic tt decay):
 - Split by charge, fitted variable: S-vs-B NN discriminant
- \Rightarrow 3 ℓ channel (dileptonic tt decay):
 - Split by charge, event categorisation based on the $N_{\text{iet}} \& N_{\text{b-jet}}$
 - Fitted variable: m(3)

LHCP 2023 | 26-05-23

CMS

Also presented by K. W. Coldham on Wed!

CMS

 \star ttW modelling using an improved NLO FxFx-merging sample.

 \star Measured higher cross section compared to the state-of-art LHC reference:

 $\sigma(t\bar{t}W) = 868 \pm 40 \text{ (stat)} \pm 51 \text{ (syst) fb} \text{ (measured)}, \quad \sigma(t\bar{t}W) = 722 + 70 \text{ (scale)} \pm 7 \text{ (PDF) fb} \text{ (SM reference)}$

 \star Parameters measured:

- Inclusive σ_{ttW} (+ per channel 2 ℓ SS/3 ℓ , ee, e μ , $\mu\mu$)

- σ_{ttW+} & σ_{ttW-} (+ ratio)

★ Comparable stat & syst uncertainties.

★ Dominant systematics related to:

- e charge misID,

- lumi, b-tagging

- normalisation of prompt bkg (ttH, VVV & ttVV).

Stergios Kazakos

Stergios Kazakos

LHCP 2023 | 26-05-23

Also presented by J.

Raine & C. Diez Pardos!

Also presented by J.

Raine & C. Diez Pardos!

LHCP 2023 | 26-05-23

Differential ttW measurement

★ Use Profile Likelihood Unfolding (PLU) at particle level.

 \Rightarrow Using Tikhonov regularisation.

★ All channels in SRs are "stitched" together in a single distribution, where the ttW (signal) is unfolded.

- ★ Definition of fiducial phase space close to the reco one.
- ★ Unfolding takes place after the bkg estimation from the CRs.
- ★ 7 observables are unfolded: $N_{\text{jet}} H_{\text{T, jet}} H_{\text{T, lep}}$ $\Delta R_{\ell b, \text{ lead}}, |\Delta \varphi_{\ell \ell, \text{ SS}}|, |\Delta \eta_{\ell \ell, \text{ SS}}|, M_{\text{jj, lead}}$

LHCP 2023 | 26-05-23

Differential ttW measurement

 \star Comparing the ttW unfolding using different generators.

 \star Including off-shell effects in the 3 ℓ channel.

 \star Higher cross section than expected, tension seen in high and low N_{iet} .

Stergios Kazakos

LHCP 2023 | 26-05-23

Also presented by J.

Raine & C. Diez Pardos!

ATLAS-CONF-2023-019

Differential ttW measurement

Stergios Kazakos

LHCP 2023 | 26-05-23

Also presented by J.

Raine & C. Diez Pardos!

ttW lep charge asymmetry measurement

 \bigstar Measurement performed in 3 ℓ channel.

Event

120

100 Post-fit

60

20

0.75

0.5

200

300

400

500 600

700 800 900 1000 H_T [GeV]

Data / Pred 1.25

50

tTW (QCD)

WZ/ZZ+jets

Uncertainty

tīZ

HF.

ttH

40

3rd Leading Lepton p_ [GeV]

ATLAS

 $CR-t\bar{t}Z, \Delta\eta^{\dagger}$

s = 13 TeV, 139

tłw (EW)

Uncertaint

Parameter measured:

 $A_{\rm c}^{\ell} = \frac{N\left(\Delta\eta^{\ell} > 0\right) - N\left(\Delta\eta^{\ell} < 0\right)}{N\left(\Delta\eta^{\ell} > 0\right) + N\left(\Delta\eta^{\ell} < 0\right)}$

where $\Delta \eta^{\ell} = |\eta_{\ell}| - |\eta_{\bar{\ell}}|$

ttw (EW)

tZq Othe

Events 200 tłw (QCD) tłw (EW) Data ATLAS 180 ttZ HF HF₄ s = 13 TeV. 139 fb tŦН tZq v-conv 160 SR summary WZ/ZZ +jets Other Uncertainty arXiv:2301.04245 Post-fit 140 120 100 80 60 \star BDT used to assign the SS lepton to the top quark. 40 20 1.4 Data / Pred. ttW (QCD) 1.2 tīZ γ-conv 0.8 tZq 0.6 SR-16-lowNy SR-16-lowNy SR-16-highN $_{j_{ots}, \Delta\eta^-}$ SR-26-lowNy jets, An-SR-26-lowNy jots, An+ SR-26-highN $_{j_{ots},\ \Delta\eta^{-}}$ SR-26-highN_{jots}, $\Delta \eta^{\star}$ Other SR-16-highN $_{j_{ots}, \Delta \eta^{+}}$ \bigstar SRs split by N_{b-iet} & sign of Δη^t. \star Definition of bkg-enriched CRs for $\Delta \eta^{\ell} > 0 \& \Delta \eta^{\ell} < 0$ to estimate the corresponding bkgs.

Also presented by C.

Diez Pardos on Thu!

X Maximum likelihood Template Fit in SRs and CRs to measure A_c^{ℓ} at detector level.

Stergios Kazakos

ATLAS

300

250 200

150 100

50

1.25

0.75 ^{0.5}5

20 25 30

Data / Pred.

CR-HFe. An

vs = 13 TeV, 139 fb

ttW lep charge asymmetry measurement

★ Measured A_{c}^{ℓ} at **detector level**:

 $A_{\rm c}^{\ell}(t\bar{t}W) = -0.123 \pm 0.136 \,(\text{stat.}) \pm 0.051 \,(\text{syst.})$

compared to the reference SM value:

 $A_{\rm c}^{\ell}(t\bar{t}W)_{\rm SM} = -0.084 \,{}^{+0.005}_{-0.003} \,({\rm scale}) \pm 0.006 \,({\rm MC \ stat.})$

 \star PLU at particle level w/o regularisation.

\star Measured A_c^{ℓ} at **particle level**:

 $A_{\rm c}^{\ell} (t\bar{t}W)^{\rm PL} = -0.112 \pm 0.170 \,(\text{stat.}) \pm 0.054 \,(\text{syst.})$

compared to the reference SM value:

 $A_{\rm c}^{\ell}(t\bar{t}W)_{\rm SM}^{\rm PL} = -0.063 \,{}^{+0.007}_{-0.004} \,({\rm scale}) \pm 0.004 \,({\rm MC \ stat.})$

 \star Statistically limited analysis.

- Dominant systematics related to:

- \Rightarrow ttV modelling
- \Rightarrow Decorrelating bkg NFs in $\Delta \eta$ bins

$\Delta A_{\rm c}^\ell(t\bar{t}W)$

Experimental uncertainties	
Jet energy resolution	0.013
Pile-up	0.007
<i>b</i> -tagging	0.005
Leptons	0.004
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.004
Jet energy scale	0.003
Luminosity	0.001

MC modelling uncertainties

$t\bar{t}W$ modelling	0.013
$t\bar{t}Z$ modelling	0.010
$\mathrm{HF}_{e/\mu}$ modelling	0.006
$t\bar{t}H$ modelling	0.005
Other uncertainties	
$\Delta \eta^{\pm}$ CR-dependency	0.046
MC statistical uncertainty	0.019
Data statistical uncertainty	0.136
Total uncertainty	0.145

arXiv:2301.04245

Stergios Kazakos

Associated production of top-quark and b-quark pairs (ttbb)

bb pair usually produced from ISR.

- Irreducible bkg to ttH(bb) & 4-top.

- ★ Challenging modelling due to the non-negligible b-quark mass (4- vs 5-flavour scheme) & difference in energy scales.
- ★ Previous results from ATLAS & CMS measured higher cross sections than the state-of-art predictions.
 - + Common MC modelling note on ttbb/ttW published by the Higgs cross-section WGs: <u>arXiv:2301.11670</u>

Stergios Kazakos

LHCP 2023 | 26-05-23

Also presented by F. Colombina on Wed!

Data

🔲 tī B

ttC

ttX

stat

tt+light

Single t

□V+jets

syst+stat

Also presented by F. Colombina on Wed!

 \star Most precise ttbb measurement so far.

- ★ Measured in 4 fiducial regions, w/ different jet & b-jet requirements.
 - Comparing the unfolding of different generators.
- \star Modelling approaches vary:
 - **POWHEG+OL+P8 (4 FS)** dedicated ttbb sample as nominal.
 - ⇒ performs better in the inclusive region (≥ 5j), overpredicts the cross section in the regions $w/ \ge 6j$. 26 Jets: 240 ≥ 7 jets: 24b, ≥ 3 light 10²
 - **POWHEG+P8 (5 FS)** tt sample as alternative (tt+ ≥1b from truth classif).
 - \Rightarrow provides a similar or better result in the \ge 6j region.

CMS-PAS-TOP-22-009

- \star Dominant systematic uncertainties:
 - $\mu_{R/F}$ scale, ISR/FSR modelling
 - b-tagging, JES/JER

Stergios Kazakos

Differential ttbb measurement

Also presented by F. Colombina on Wed!

 \star Using Profile Likelihood Unfolding to unfold to particle level.

 \star Unfolding various kinematic & angular variables including inv masses, p_T , $|\eta|$, ΔR of b-quarks, N_{iet} , $N_{\text{b-iet}}$, H_T^{jet} , etc.

Stergios Kazakos

Summary & outlook

ttW and **ttbb** processes are quite challenging to model.

- ttW: Due to electroweak (EW) NLO corrections & more channels opening up at higher orders.
- **ttbb**: Large scale dependence, non-negligible difference in 4- & 5-FS.
 - \Rightarrow Both needed for the measurements of other processes (e.g. ttH, tttt) and found to be underestimated by MC.
- \star Measurements of **inclusive ttW cross section** & $\sigma_{ttW+} / \sigma_{ttW-}$ from both ATLAS & CMS w/ full Run-2 dataset.
 - Larger cross section wrt the SM reference by both experiments (up to ~ x1.46), larger ratio observed by ATLAS.
- **★** First **ttW** differential and lepton charge asymmetry measurements at the LHC from ATLAS!
 - Interesting behaviour for some of the unfolded variables.
 - Try to interpret the results together with theorists.
- ***** Measurements of **inclusive ttbb cross section** from both ATLAS & CMS w/ partial Run-2 dataset.

† First inclusive & differential **ttbb** measurement w/ full Run-2 dataset from CMS!

More interesting results to come, stay tuned!