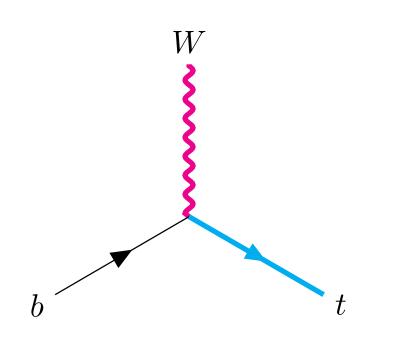


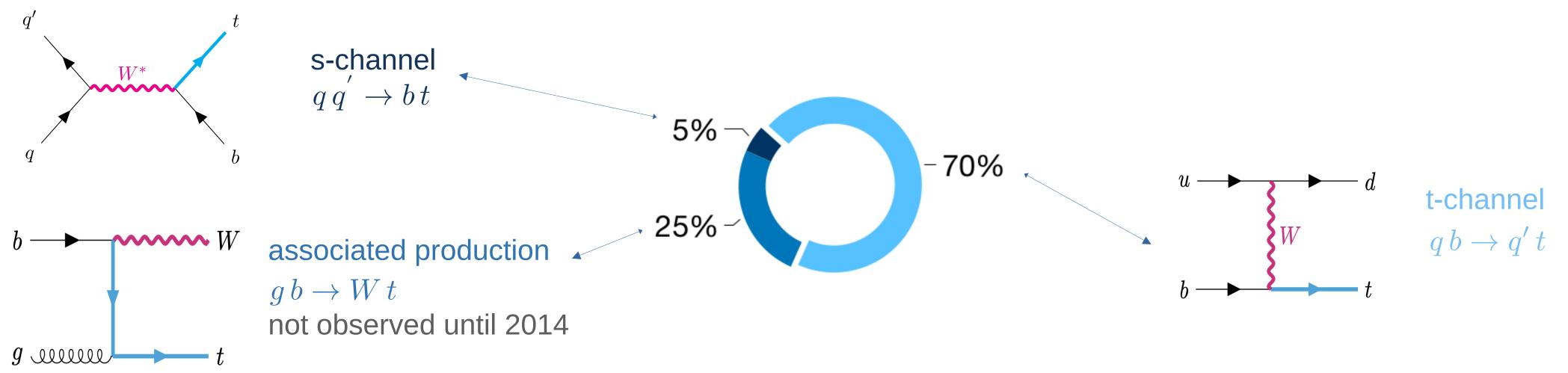
Non-factorisable contributions to t-channel single-top production

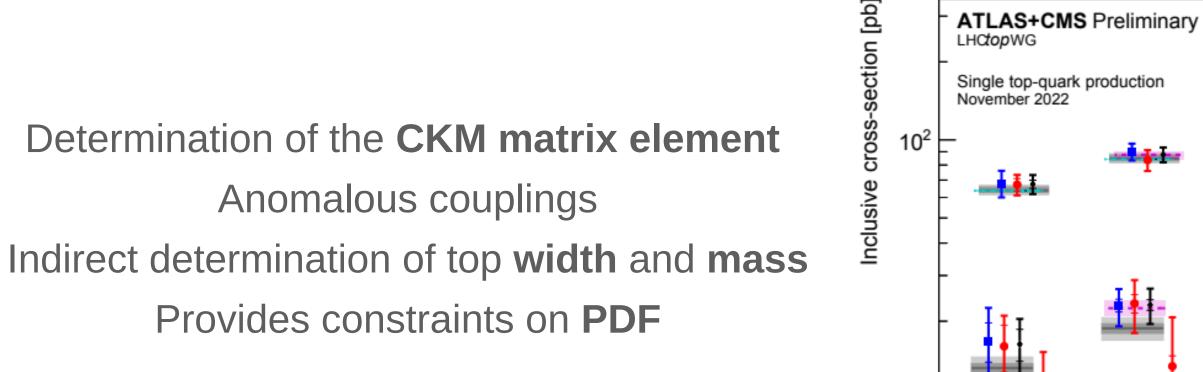
Christian Brønnum-Hansen

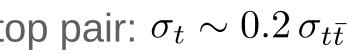
Belgrade 24th of May 2023

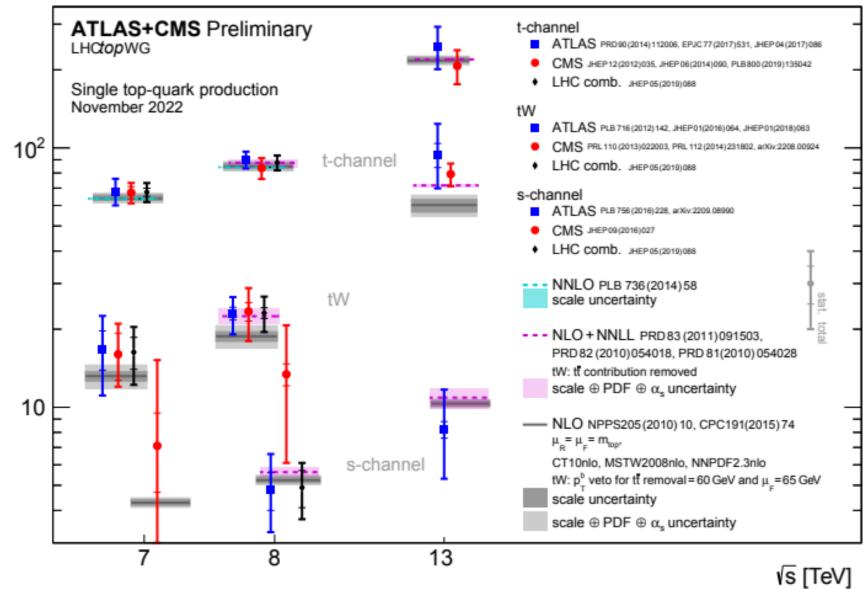
In collaboration with: Kirill Melnikov, Jérémie Quarroz, Chiara Signorile-Signorile, and Chen-Yu Wang Based on 2108.09222 and 2204.05770


CARIŞBERG FOUNDATION




Single-top production: 3 channels


Electroweak mediated

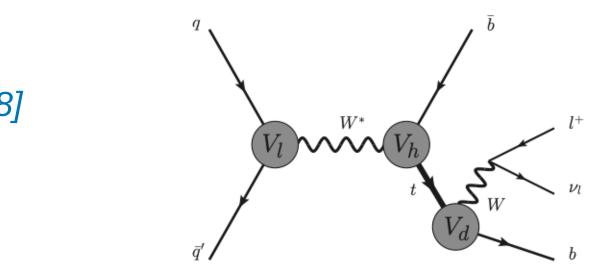


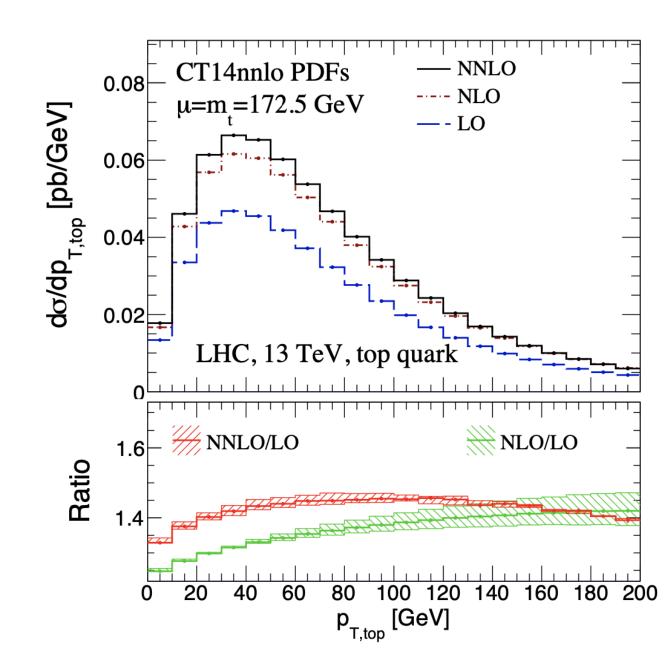
Production rate at the LHC of comparable of magnitude to top pair: $\sigma_t \sim 0.2 \sigma_{t\bar{t}}$

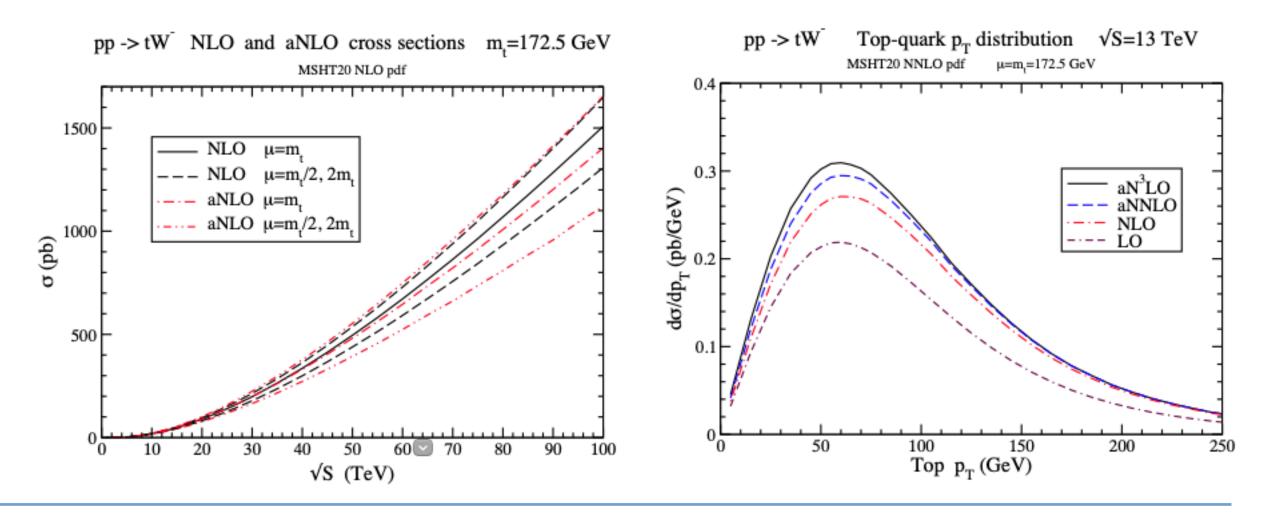
Single-top production: theory status, s- and tW-channel s-channel:

NNLO QCD corrections in production and decay [Liu, Gao '18] Inclusive corrections are ~5 % w.r.t. NLO

In low p_{\perp} region, NNLO corrections can reach 10 %


No overlap of NLO and NNLO bands in most regions: NNLO corrections underestimated.

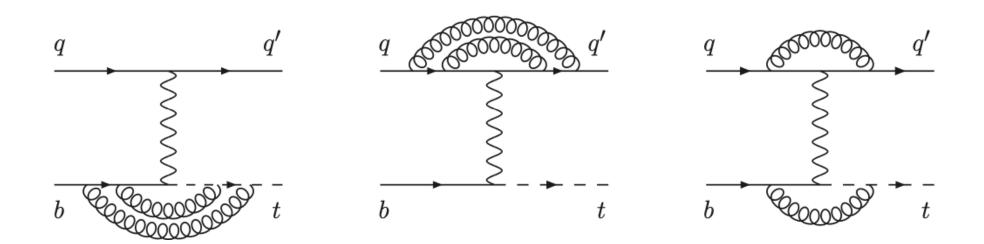

inclusive		LO	NLO	NNLO	
8 TeV	$\sigma(t)[{ m pb}]$	$2.498^{+0.17\%}_{-0.74\%}$	$3.382^{+2.36\%}_{-1.81\%}$	$3.566^{+0.95\%}_{-0.78\%}$	
	$\sigma(ar{t})[{ m pb}]$	$1.418^{+0.12\%}_{-0.73\%}$	$1.922^{+2.37\%}_{-1.81\%}$	$2.029^{+1.07\%}_{-0.83\%}$	
	$\sigma(t+\bar{t})$ [pb]	$3.916^{+0.15\%}_{-0.73\%}$	$5.304^{+2.36\%}_{-1.81\%}$	$5.595^{+0.99\%}_{-0.80\%}$	
	$\sigma(t)/\sigma(ar{t})$	$1.762^{+0.04\%}_{-0.01\%}$	$1.760^{+0.00\%}_{-0.02\%}$	$1.757^{+0.05\%}_{-0.12\%}$	
$13 { m TeV}$	$\sigma(t)[{ m pb}]$	$4.775^{+2.69\%}_{-3.50\%}$	$6.447^{+1.39\%}_{-0.91\%}$	$6.778^{+0.76\%}_{-0.53\%}$	
	$\sigma(ar{t})[{ m pb}]$	$2.998^{+2.69\%}_{-3.55\%}$	$4.043^{+1.33\%}_{-0.94\%}$	$4.249^{+0.69\%}_{-0.48\%}$	
	$\sigma(t+\bar{t})$ [pb]	$7.772^{+2.69\%}_{-3.52\%}$	$10.49^{+1.36\%}_{-0.92\%}$	$11.03^{+0.74\%}_{-0.51\%}$	
	$\sigma(t)/\sigma(ar{t})$	$1.593^{+0.05\%}_{-0.01\%}$	$1.595^{+0.06\%}_{0.03\%}$	$1.595^{+0.07\%}_{-0.05\%}$	


tW-channel:

Approximate approaches used to infer higher-order corrections [Kidonakis, Yamanaka '21]

NNLO QCD corrections not known yet (analytic 2-loop amplitudes known [Chen, Dong, Li, Li, Wang, Wang '22])

Non-factorisable contributions to single top production



Single-top production: theory status, t-channel (I)

Two types of topologies contribute to the *t*-channel, single-top production:

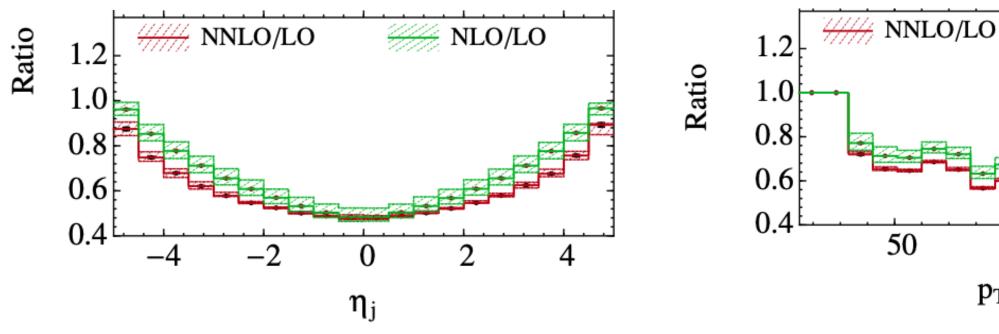
- **Factorisable contributions**

 - [Harris, Laenen, Phaf, Sullivan, Weinzierl '02] [Schwienhorst, Yuan, Mueller, Cao '11]
 - NNLO QCD
 - First calculated for a **stable top quark** [Brucherseifer, Caola, Melnikov '14]
 - **Small effects** on inclusive cross-section and on cross-section with $p_{\perp,t}$ cuts

Structure function approximation \rightarrow crosstalk between quark lines neglected due to colour suppression

NLO QCD [Bordes, van Eijk '95] [Campbell, Ellis, Tramontano '04] [Cao, Yuan '05] [Cao, Schwienhorst, Benitez, Brock, Yuan '05]

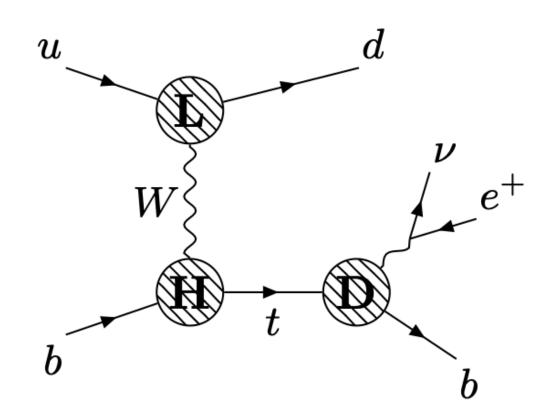
MSTW2008, lo, nlo, nnlo PDF, $\mu_R = \mu_F = m_t = 173 \text{ GeV} @ 8 \text{ TeV}$


p_{\perp}	$\sigma_{ m LO},{ m pb}$	$\sigma_{ m NLO},{ m pb}$	$\delta_{ m NLO}$	$\sigma_{ m NNLO},{ m pb}$	$\delta_{ m NNLO}$
$0 \mathrm{GeV}$	$53.8^{+3.0}_{-4.3}$	$55.1^{+1.6}_{-0.9}$	+2.4%	$54.2\substack{+0.5 \\ -0.2}$	-1.6%
	$46.6^{+2.5}_{-3.7}$	$48.9^{+1.2}_{-0.5}$	+4.9%	$48.3\substack{+0.3 \\ -0.02}$	-1.2%
40 GeV	$33.4^{+1.7}_{-2.5}$	$36.5\substack{+0.6 \\ -0.03}$	+9.3%	$36.5^{+0.1}_{+0.1}$	-0.1%
$60 \mathrm{GeV}$	$22.0^{+1.0}_{-1.5}$	$25.0^{+0.2}_{+0.3}$	+13.6%	$25.4_{\pm 0.2}^{-0.1}$	+1.6%

Single-top production: theory status, t-channel (II)

NNLO QCD

- Extension to top-quark decay in the NW approximation, including also NNLO in decay
- · (computed using SCET/jettiness + projection to Born) [Berger, Gao, Yuan, Zhu '16, '17]
- Large corrections for some distributions

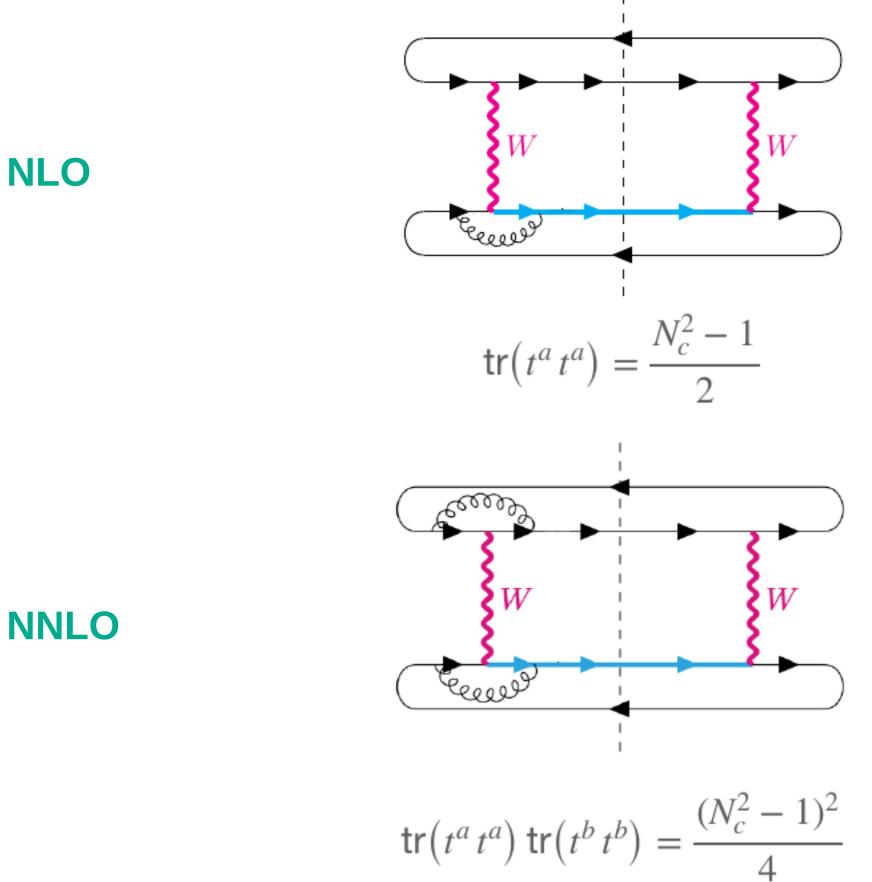


Disagreement with earlier calculation of inclusive cross-section

Independent calculation based on SCET approach [Campbell,

CT14, lo, nlo, nnlo PDF, $\mu_R = \mu_F = m_t = 172.5$

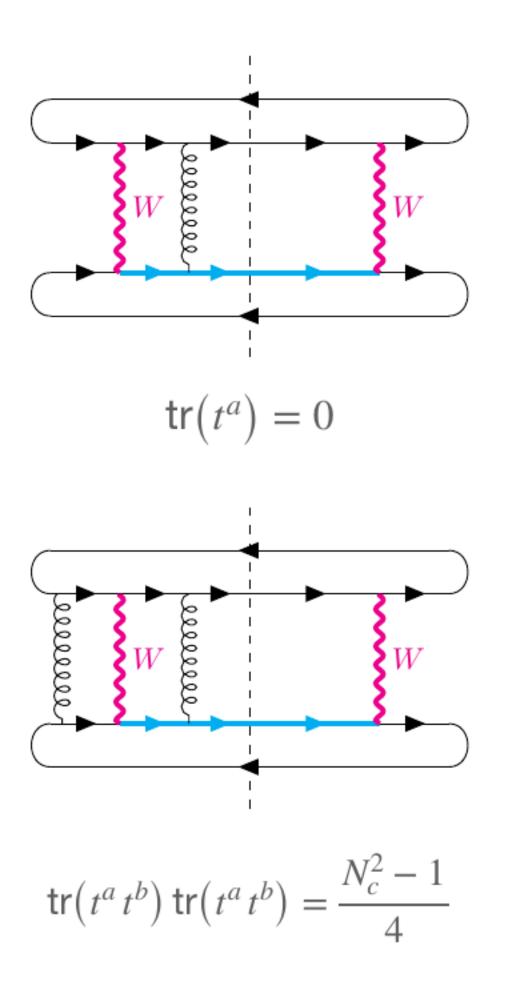
$$\delta \sigma^{\rm NNLO} \sim -0.7 \% \sigma^{\rm NLO}$$


0 ///NLO/LO					
		$7{ m TeV}\;pp$		$14 \mathrm{TeV} \ pp$	
		top	anti-top	top	anti-top
100 150 p _{T,b} [GeV]	$\sigma_{ m LO}^{\mu=m_t}$	$37.1^{+7.1\%}_{-9.5\%}$	$19.1^{+7.3\%}_{-9.7\%}$	$\left \begin{array}{c} 134.6^{+10.0\%}_{-12.1\%} ight $	$\left \begin{array}{c} 78.9^{+10.4\%}_{-12.6\%} ight $
	$\sigma_{ m LO}^{ m DDIS}$	$39.5^{+6.4\%}_{-8.6\%}$	$19.9^{+7.0\%}_{-9.3\%}$	$140.9^{+9.4\%}_{-11.4\%}$	$80.7^{+10.2\%}_{-12.3\%}$
ion	$\sigma_{ m NLO}^{\mu=m_t}$	$\left \begin{array}{c} 41.4^{+3.0\%}_{-2.0\%} \right.$	$21.5^{+3.1\%}_{-2.0\%}$	$154.3^{+3.1\%}_{-2.3\%}$	$91.4^{+3.1\%}_{-2.2\%}$
	$\sigma_{ m NLO}^{ m DDIS}$	$41.8^{+3.3\%}_{-2.0\%}$	$21.5^{+3.4\%}_{-1.6\%}$	$154.4^{+3.7\%}_{-1.4\%}$	$91.2^{+3.1\%}_{-1.8\%}$
l, Neumann, Sullivan '21]		$ \text{ PDF} {}^{+1.7\%}_{-1.4\%}$	$PDF^{+2.2\%}_{-1.5\%}$	PDF $^{+1.7\%}_{-1.1\%}$	PDF $^{+1.9\%}_{-0.9\%}$
$5{ m GeV}@14{ m TeV}$	$\sigma^{\mu=m_t}_{ m NNLO}$	$41.9^{+1.2\%}_{-0.7\%}$	$21.9^{+1.2\%}_{-0.7\%}$	$\left 153.3(2)^{+1.0\%}_{-0.6\%} ight $	$91.5(2)^{+1.1}_{-0.9}$
JGEV @ 14 IEV	$\sigma_{ m NNLO}^{ m DDIS}$	$41.9^{+1.3\%}_{-0.8\%}$	$21.8^{+1.3\%}_{-0.7\%}$	$153.4(2)^{+1.1\%}_{-0.7\%}$	
		$PDF^{+1.3\%}_{-1.1\%}$	PDF $^{+1.4\%}_{-1.3\%}$	$PDF^{+1.2\%}_{-1.0\%}$	PDF $^{+1.0\%}_{-1.0\%}$

 $(2)^{+1.1\%}_{-0.9\%}$ $2)^{+1.1\%}_{-0.9\%}$ -1.0%-1.0%

- 3.1%1.8%-1.9%-0.9%
- 2.6%10.2%2.3%
- 10.4%

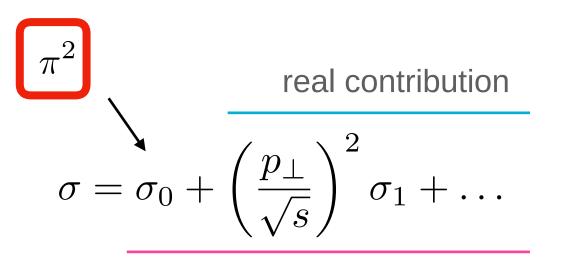
Non-factorisable corrections: why? (I)

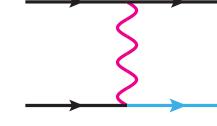

Factorisable contributions

NLO

Christian Brønnum-Hansen

Non-factorisable contributions

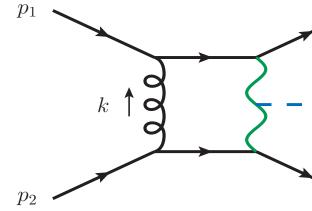



Non-factorisable corrections: why? (II)

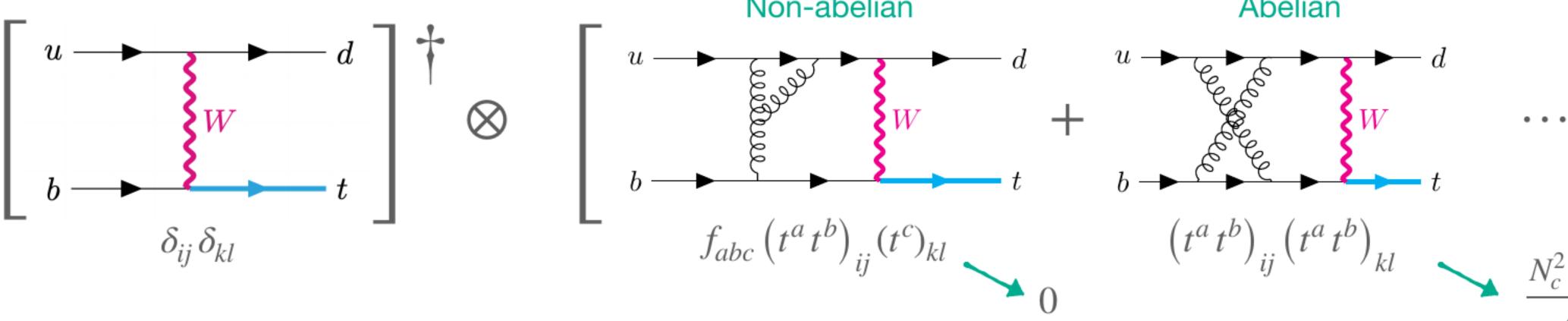
However:

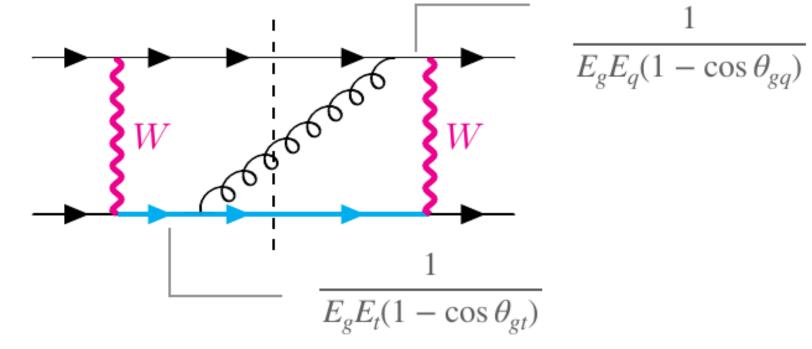
Factorisable predictions are already small, about a few percent The actual size of NNLO non-factorisable corrections cannot be inferred from NLO contributions Non-factorisable corrections could be enhanced by a factor $\pi^2 \simeq 10$ related to a Glauber phase

- shown for Higgs production in weak boson fusion in the eikonal approximation [Liu, Melnikov, Penin '19]
- loop effect that, in principle, does not require a scattering to occur



virtual contribution

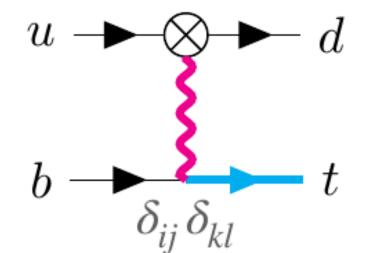

Non-factorisable contributions vanish at NLO due to their colour structure, and are suppressed by a factor $N_c^2 - 1 = 8$ at NNLO.

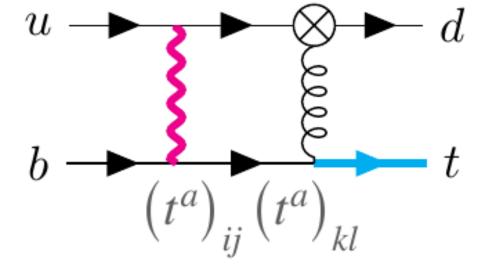

-
$$p_{\perp}^t \sim 40 \,\mathrm{GeV}$$
 $\sqrt{s} \sim 300 \,\mathrm{GeV}$

Non-factorisable corrections: ingredients of the calculation (II)

Non-factorisable contributions have to **connect upper and lower quark lines** and are effectively **Abelian**

The infrared structure is simplified: no collinear singularities


All IR singularities are of soft origin.


Christian Brønnum-Hansen

Non-abelian

Non-factorisable contributions are **UV finite**

Renormalisation simply consists of $\alpha_s^{\text{bare}} = \alpha_s \mu^{2\epsilon} S_{\epsilon}$

Non-factorisable contributions to single top production

Single top production: Results at 13 TeV (I)

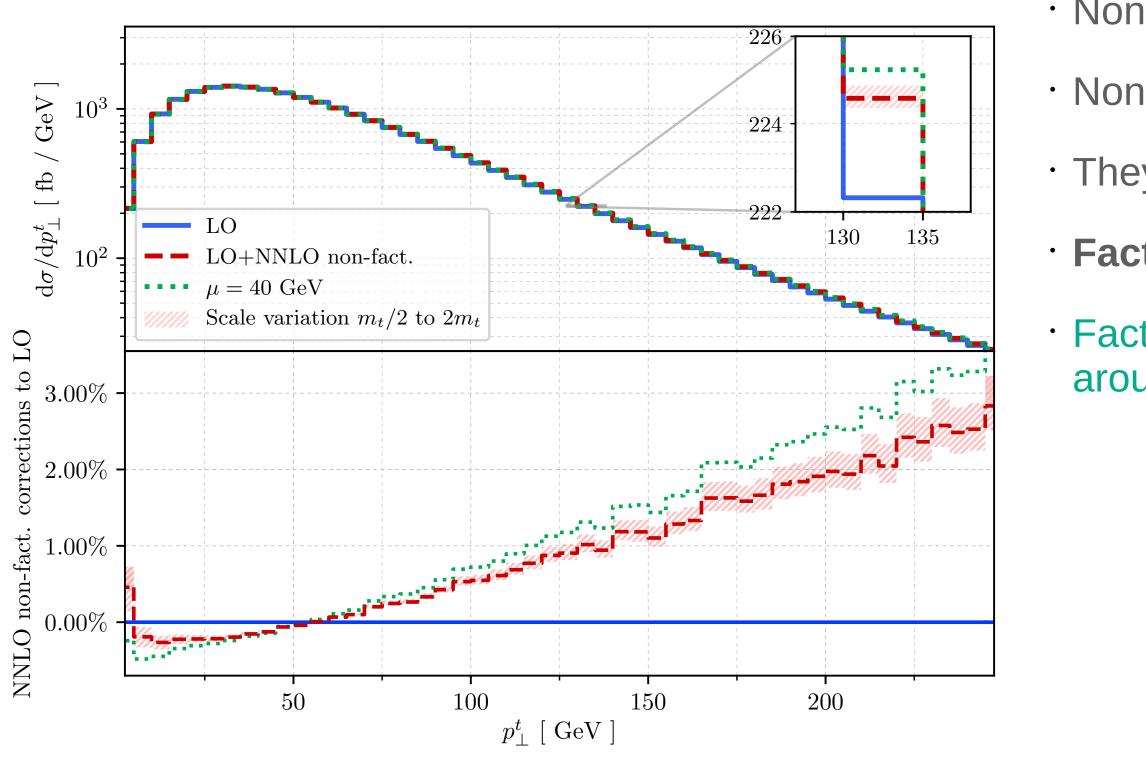
Differential cross section:

pp collision: $\sqrt{s} = 13 \,\text{TeV}$, PDFs: CT14_lo@LO, CT14_nnlo@NNLO

 $\frac{\sigma_{pp \to X+t}}{1 \text{ pb}} =$

- Non-factorisable corrections are $0.22^{-0.04}_{+0.05}$ % LO for $\mu_R = m_t$. •
- **Theoretical uncertainties** are estimated through scale variation: $\mu_R \in [m_t/2, 2m_t]$.
- For $\mu_R = 40$ GeV (typical momentum transfer scale of top quark) non-factorisable corrections are 0.35 % LO. ٠
- In comparison, NNLO factorisable corrections to NLO cross section are around 0.7 %. •

 $m_W = 80.379 \,\text{GeV}, \, m_t = 173.0 \,\text{GeV}, \, \alpha_S(m_t) = 0.108, \, \mu_F = m_t$


$$117.96 + 0.26 \left(\frac{\alpha_s(\mu_R)}{0.108}\right)^2$$

Unclear optimal scale choice: non-factorisable corrections appear for the first time at NNLO \rightarrow no indication from lower orders.

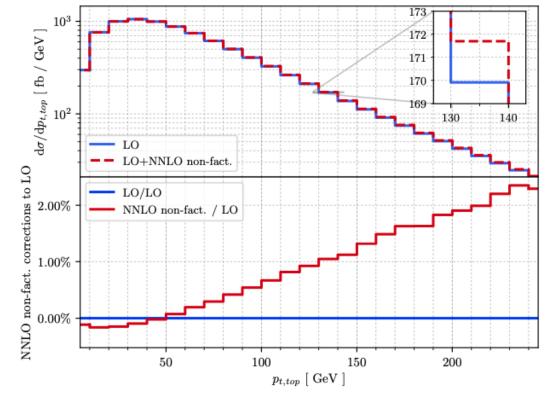
Single top production: Results at 13 TeV (II)

Differential cross section:

pp collision: $\sqrt{s} = 13 \,\text{TeV}$, PDFs: CT14_lo@LO, CT14_nnlo@NNLO

[Brønnum-Hansen, Melnikov, Quarroz, Signorile-Signorile, Wang '22]

 $m_W = 80.379 \,\text{GeV}, \, m_t = 173.0 \,\text{GeV}, \, \alpha_S(m_t) = 0.108, \, \mu_F = m_t$


· Non-factorisable corrections are p_{\perp}^{t} dependent.

· Non-factorisable corrections are small and negative at low values of p_{\perp}^{t}

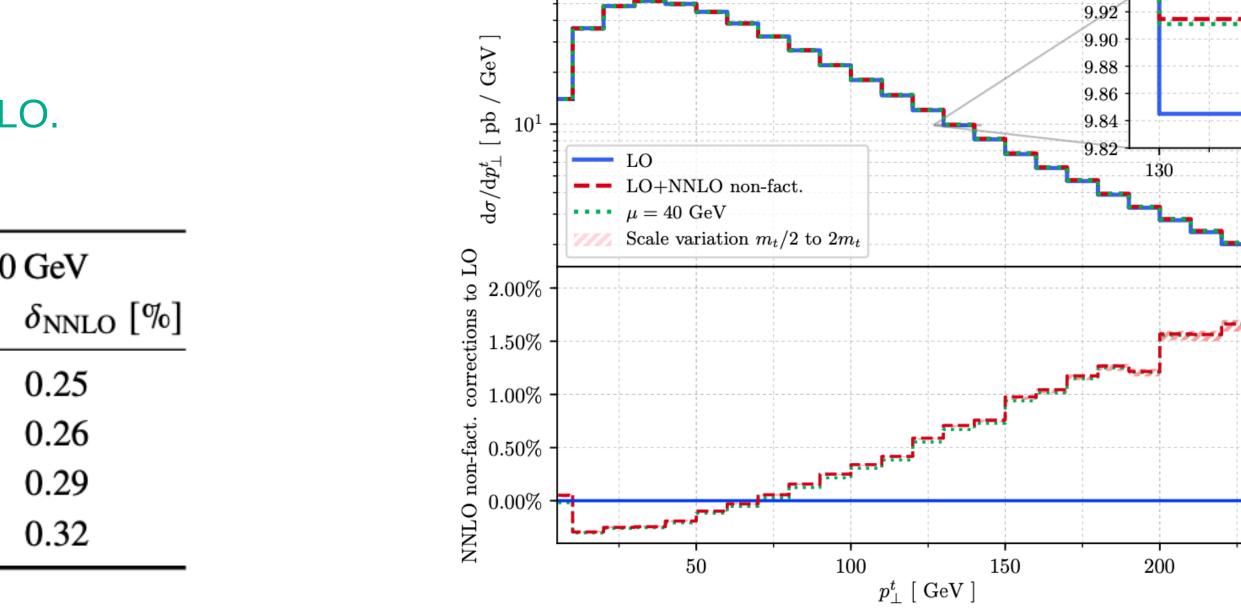
• They vanish at $p_{\perp}^t \sim 50 \,\text{GeV}$ (in agreement with results for virtual corrections)

• Factorisable corrections vanish around $p_{\perp}^{t} \sim 30 - 40 \,\mathrm{GeV}$

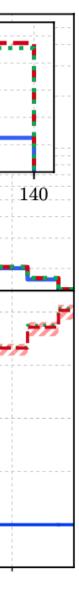
• Factorisable and non-factorisable corrections are comparable in the region around the maximum of the p_{\perp}^{t} distribution.

[Brønnum-Hansen, Melnikov, Quarroz, Wang '21]

Results at 100 TeV


Differential cross section:

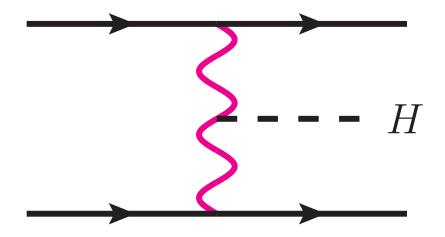
pp collision: $\sqrt{s} = 100 \text{ TeV}$ PDFs: CT14_lo@LO


0, CT14_nnlo@NNLO
$$m_W = 80.379 \,\text{GeV}, \, m_t = 173.0 \,\text{GeV}, \, \alpha_S(m_t) = 0.108, \, \mu_F = n_F$$

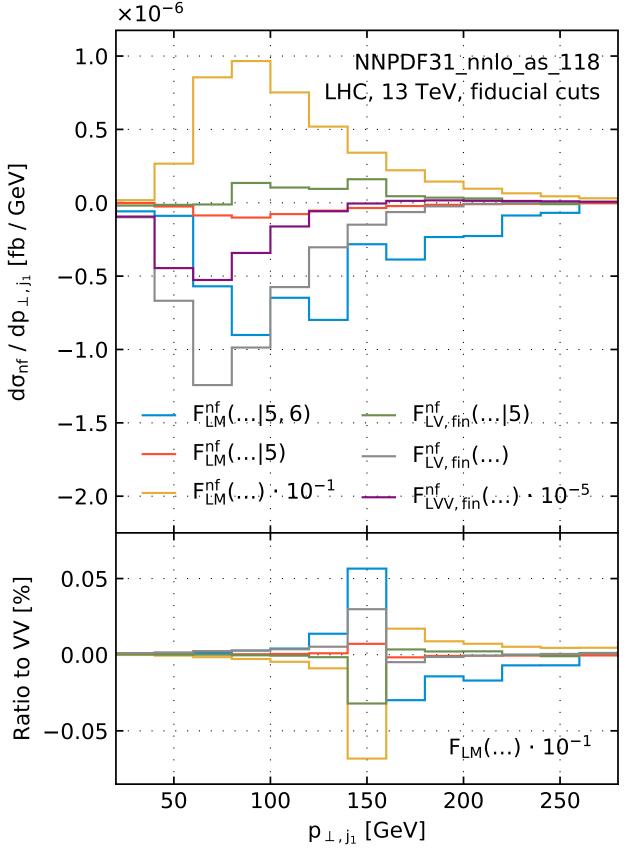
$$\frac{\sigma_{pp \to X+t}}{1 \,\text{pb}} = 2367.0 + 3.8 \left(\frac{\alpha_s(\mu_R)}{0.108}\right)^2$$

- Non-factorisable corrections are 0.16 % LO for $\mu_R = m_t$.
- p_{\perp}^{t} peaks around 40 GeV, changes sign around 70 GeV. ٠
- For $\mu_R = 40$ GeV non-factorisable corrections are 0.25 % LO. ٠

		$\mu_R = m_t$		$\mu_R = 40$	00
$p_{\perp}^{t,\mathrm{cut}}$	$\sigma_{ m LO}~({ m pb})$	$\sigma_{ m NNLO}^{ m nf}$ (pb)	$\delta_{ m NNLO}$ [%]	$\sigma_{ m NNLO}^{ m nf}$ (pb)	δ
0 GeV	2367.02	$3.79^{-0.63}_{-0.84}$	$0.16^{-0.03}_{-0.04}$	5.95	0
20 GeV	2317.03	$3.89^{-0.64}_{-0.86}$	$0.17^{-0.03}_{-0.04}$	6.11	C
40 GeV	2216.61	$4.14^{-0.69}_{-0.92}$	$0.19^{-0.03}_{-0.04}$	6.50	C
60 GeV	2121.88	$4.28^{+0.71}_{-0.95}$	$0.20^{-0.03}_{-0.04}$	6.71	C


Recent work on non-factorisable VBF Higgs production presented in arXiv:2305.08016

Differential cross section:


pp collision: $\sqrt{s} = 13 \,\text{TeV}$, PDFs: NNPDF31-nnlo-as-118

$$\sigma_{\rm nf} = -3.1 \,\text{fb}$$
 $\mu_R = \mu_F = \sqrt{\frac{m_H}{2}} \sqrt{\frac{m_H^2}{4} + p_{\perp,H}^2}$

- Non-factorisable corrections are 0.5 % of factorisable through NNLO •
- Double-virtual accounts for 99.99% due to strong suppression of other ٠ contributions within fiducial volume
- For $\mu_R = \mu_F$ scale variation is $\mathcal{O}(40)$ % ٠

 $m_H = 125.0 \,\text{GeV}, \, m_W = 80.398 \,\text{GeV}, \, m_Z = 91.1876 \,\text{GeV}, \, \alpha_S(m_Z) = 0.118$

[Asteriadis, Brønnum-Hansen, Melnikov '23]

Non-factorisable contributions to single top production

Thank you for your attention!

Christian Brønnum-Hansen

