Searches for BSM and FCNC with top quarks in ATLAS

Adrian Salvador Salas On behalf of the ATLAS collaboration LHCP2023 25 May 2023

Belgrade, 22 - 26 May 2023

Exploring Beyond the SM (BSM) with the top quark

- → Various BSM theories that complete the SM
 - 2HDM, DM models, composite Higgs...
- → The role of the top quark in BSM
 - Attractive due its large mass, close to the EW scale
 - Highest coupling to the Higgs boson
 - Primary decay t→Wb, while other decays are rare
 - Many models modify the top quark couplings or predict interactions with new particles
- → The Large Hadron Collider a top quark factory
 - Prime source for top quark production
 - Numerous ATLAS analyses involve the production and decay of top quarks

A. Salvador | 25 May 2023

tta, a→µµ

arXiv:2304.14247

- → Light scalars predicted in 2HDM+a, NMSSM... with large couplings to top quarks
- → Search for resonance in $e\mu\mu$ or $\mu\mu\mu$, with multiple jets
 - m_a 15 72 GeV and m_{H+} 120 160 GeV
 - Main backgrounds: prompt muons from ttZ, non-prompt from tt and Z+jets

Ht/Zt+X single VLQ analysis

arXiv:2305.03401

- → Vector-like T quarks (VLQ) are fermionic partners of the top quark in many BSM
- → Search focused on T \rightarrow Ht and T \rightarrow Zt in singlet and doublet configurations
 - Single-lepton final state with regions defined with different multiplicity of jets, b-jets, forward jets and boosted tagged objects
 - Set of regions to target the different signal channels and to control tt background

tt+light-jets

// Uncertainty

CR

LI HJ

ofj, 1t, 0H, 0(V+t,)

đj,

o, 1fj, 0t_j, 1H, 1(V+t_h 4b, 1fj, 1H, 2(V+t_i+t_h

tt+≥1b

V+jets

, ot₁, oH, 1V

b, 1fj, 1t,, 1H, 0(V+t,)

lb, 1fj, ot_i, 1H, 1(V+t_i 3b, 1fj, 1H, 2(V+t_i+t lb, 1fj, 1t_i, 1H, 0(V+t

1fj, 2(t_h+t), 0H, 1\

Ht/Zt+X single VLQ analysis

arXiv:2305.03401

- → Vector-like T quarks (VLQ) are fermionic partners of the top quark in many BSM
- → Search focused on T \rightarrow Ht and T \rightarrow Zt in singlet and doublet configurations
 - Single-lepton final state with regions defined with different multiplicity of jets, b-jets, forward jets and boosted tagged objects
 - Set of regions to target the different signal channels and to control tt background

Single VLQ in multi-lepton final states

ATLAS-CONF-2023-020

- → Most extensive VLQ-T signal range to date, m_{τ} 1-2.7 TeV and k 0.1 to 1
- → Search focused on WTZt and ZTZt in singlet and doublet configurations
 - Multi-lepton selection defined with different multiplicity of jets, b-jets, forward jets and boosted tagged objects
 - Di-lepton regions dominated by Z+jets background, tri-lepton by VV and tt+Z

Top-philic heavy resonant search

arXiv:2304.01678

- Heavy BSM vector resonances coupling strongly to top quarks
- → Search for a resonance between 1 and 3.2 TeV in fully hadronic decay mode
 - Resonance mass reconstruction using two reclustered jets
 - Dijet background estimated in signal-depleted region
 - Performed a bump hunt and a model-dependent likelihood fit

0.5

Fraction of events / 0.1 TeV

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

7

FCNC couplings with top quarks

→ FCNC interactions are very suppressed in the SM

- Absent at tree level and the GIM mechanism
- → Enhanced couplings in many BSM
 - Quark-singlet models, 2HDM, Supersymmetry, composite Higgs...

→ Main top FCNC couplings measured in ATLAS using 139 fb⁻¹

Process	SM	ATLAS	γ
$\begin{array}{l} t \to u\gamma \\ t \to c\gamma \end{array}$	$\left \begin{array}{c} 4 \cdot 10^{-16} \\ 5 \cdot 10^{-14} \end{array}\right $	$0.85 \cdot 10^{-5} \ 4.2 \cdot 10^{-5}$	arXiv:2205.02537
$\begin{array}{l} t \to ug \\ t \to cg \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.61 \cdot 10^{-4} \ 3.7 \cdot 10^{-4}$	 Eur. Phys. J. C 82 (2022) 334
$\begin{array}{c} t \to uZ \\ t \to cZ \end{array}$	$\left \begin{array}{c} 8 \cdot 10^{-17} \\ 1 \cdot 10^{-14} \end{array}\right $	$6.2 \cdot 10^{-5}$ $13 \cdot 10^{-5}$	arXiv:2301.11605
$t \to uH$ $t \to cH$	$ 2 \cdot 10^{-17} $ $ 3 \cdot 10^{-15} $	$\begin{array}{c} 6.9 \cdot 10^{-4} (H \to \tau \tau) \\ 7.6 \cdot 10^{-4} (H \to bb) \\ 9.4 \cdot 10^{-4} (H \to \tau \tau) \\ 8.8 \cdot 10^{-4} (H \to bb) \end{array}$	

u, c

u, c

FCNC t→qZ

arXiv:2301.11605

- → Excellent probe for new physics: SM BR(t→qZ)~10⁻¹⁴
- → Search either for the tZu or tZc coupling
 - Three leptons in the final state
 - Main backgrounds: prompt leptons from ttZ and VV
 - Different BDTs targeting separately the tZu production, the tZc production and the tt decay process

Observable	Vertex	Coupling	Observed	Expected		
	SRs+CRs					
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-5}$		
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10^{-5}$		
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$		
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10^{-5}$		
Factor 3 (2) improvement compared to tZu (tZc) 36.1 fb ⁻¹ results						

9

FCNC t→qX(bb)

arXiv:2301.03902

- → FCNC couplings enhanced by introducing a scalar with flavour charge (flavon)
- → Search for a neutral scalar in FCNC top decays in tt events
 - \blacksquare Performed separately for t→uX and t→cX with X→bb
 - Discrimination using NN trained on jet and lepton kinematics and m_{hh}
 - Upper limits also extracted for the process involving the SM Higgs t→qH(bb)

FCNC t→qX(bb)

arXiv:2301.03902

- → FCNC couplings enhanced by introducing a scalar with flavour charge (flavon)
- → Search for a neutral scalar in FCNC top decays in tt events
 - \blacksquare Performed separately for t→uX and t→cX with X→bb
 - Discrimination using NN trained on jet and lepton kinematics and m_{hh}
 - Upper limits also extracted for the process involving the SM Higgs t→qH(bb)

- → Upper limits on BR(t→uX) and BR(t→cX) reach ~2.10⁻⁴
- → Limits on BR(t→qH) significantly improved with respect to 36 fb⁻¹ result

BR Upper limit	ATLAS (139 fb ⁻¹) $ $	ATLAS (36 fb^{-1})
$\begin{array}{c} t \to u H(b \bar{b}) \\ t \to c H(b \bar{b}) \end{array}$	$0.077\% \\ 0.12\%$	$0.52\% \ 0.42\%$

cLFV tμτq

ATLAS-CONF-2023-001

- Charged lepton flavour violation in BSM (leptoquarks)
- → Search for cLFV vertex in both production and decay processes
 - Three lepton selection $\mu\mu\tau_{had-vis}/\mu\mu\mu/e\mu\mu$
 - **Dedicated estimations for fake** $\tau_{had-vis}$ and non-prompt muon backgrounds
 - Signal upper limits and EFT interpretation

All systematics

 10×10^{-7}

 11×10^{-7}

Summary

- → Presented recent ATLAS BSM and FCNC searches:
 - tta, a→μμ <u>arXiv:2304.14247</u> 27 April 2023
 - Ht/Zt+X single VLQ analysis <u>ATLAS-CONF-2023-001</u> 5 January 2023
 - Single VLQ in multi-lepton final states <u>ATLAS-CONF-2023-020</u> 26 March 2023
 - Top-philic heavy resonant search <u>arXiv:2304.01678</u> 4 April 2023
 - FCNC t→qZ <u>arXiv:2301.11605</u> 27 January 2023
 - FCNC t→qX(bb) <u>arXiv:2301.03902</u> 10 January 2023
 - CLFV μτ <u>ATLAS-CONF-2023-001</u> 5 January 2023
- → The top quark offers plenty of opportunities for new physics
- Extensive ATLAS efforts to look for new signatures using the top quark
 Full list of <u>publications</u> and <u>conference notes</u>
- Looking forward to uncovering more in Run-3 with innovations in reconstruction techniques and background modelling

BACKUP

tta, a→μμ arXiv:2304.14247

Ht/Zt+X single VLQ analysis

arXiv:2305.03401

σ limit [fb]

95% CL

FCNC t→qZ

arXiv:2301.11605

Vertex	Coupling	μ
tZu	LH	0.08 ± 0.12 (stat.) ± 0.08 (syst.)
tZu	RH	0.10 ± 0.12 (stat.) ± 0.08 (syst.)
tZc	LH	$0.10 \pm 0.17 \text{ (stat.)} \pm 0.14 \text{ (syst.)}$
tZc	RH	0.06 ± 0.16 (stat.) ± 0.13 (syst.)

u / c	~	Z	g yees		
g 999999	Cont t	b W	8 -999999		b Come Z
Observable	Vertex	Coupling	Observed	Expected	· <i>u</i> /c
	SRs+CRs				
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-5}$	-
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10^{-5}$	
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$	
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10^{-5}$	
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13 \substack{+0.03 \\ -0.02}$	-
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	RH	0.16	$0.14 \stackrel{+0.03}{_{-0.02}}$	
$ C_{uW}^{(23)*} $ and $ C_{uB}^{(23)*} $	tZc	LH	0.22	$0.20 \stackrel{+0.04}{_{-0.03}}$	
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19 \stackrel{+0.04}{_{-0.03}}$	
	SR1+CRs				
$\mathcal{B}(t \to Zq)$	tZu	LH	9.7×10^{-5}	$8.6^{+3.6}_{-2.4} \times 10^{-5}$	
$\mathcal{B}(t \to Zq)$	tZu	RH	9.5×10^{-5}	$8.2^{+3.4}_{-2.3} \times 10^{-5}$	_
	SR2+CRs				-
$\mathcal{B}(t \to Zq)$	tZu	LH	7.8×10^{-5}	$6.1^{+2.7}_{-1.7} \times 10^{-5}$	2
$\mathcal{B}(t \to Zq)$	tZu	RH	9.0×10^{-5}	$6.6^{+2.9}_{-1.8} \times 10^{-5}$	

W

cLFV tμτq

ATLAS-CONF-2023-001

	95%	95% CL upper limits on Wilson coefficients				$c/\Lambda^2~[{ m TeV}^{-2}]$		
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$	$c_{lequ}^{3(ij3k)}$
Previous (u) [22	2] 12	12	12	12	26	26	3.4	3.4
Expected (u)	0.47	0.44	0.43	0.46	0.49	0.49	0.11	0.11
Observed (u)	0.49	0.47	0.46	0.48	0.51	0.51	0.11	0.11
Previous (c) [22] 14	14	14	14	29	29	3.7	3.7
	9	95% CL upper limits on ${ m BR}(t o \mu au q) ~~(imes 10^{-7})$						
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$	$c_{lequ}^{3(ij3k)}$
Expected (u)	4.6	4.2	4.0	4.5	2.5	2.5	5.8	5.8
Observed (u)	5.1	4.6	4.4	5.0	2.8	2.8	6.4	6.4
Expected (c)	54	51	51	52	35	35	61	61
Observed (c)	60	56	56	57	38	38	68	68