CERN

Future Monolithic Pixel Detectors in ALICE and beyond

Francesca Carnesecchi

On behalf of the ALICE collaboration

25th May 2023, Belgrade The 11th annual Large Hadron Collider Physics conference

LHCP 2023

ALICE **CMOS MAPS – a short introduction**

Qualitative timeline...

Early 2001 1969 Today **1990s** Digital imaging \rightarrow with the invention of the Charge-Coupled Device (CCD). → Start of the the digital imaging revolution HARGED PARTICLE Emergence of **C**omplementary machine vision, human recognition and

- most widespread implementation of image sensors, advantage \rightarrow price
- CMOS Imaging Sensor (CIS) capacity is extending to 28-22nm

Big steps for charge particles detection

Nobel Prize in Physics in 2009 Willard S. Boyle and George E. Smith "for the invention of an imaging semiconductor circuit - the CCD sensor"

Metal-Oxide Silicon (CMOS) Image Sensor technology

Since 15 years \rightarrow leading imaging technology

MIMOSA-1 Early versions with thin and low resistivity epi-layer

https://doi.org/10.1016/S0168-9002(00)00893-7

MOS TRANSISTORS IN PWE

DISTANCE

- Shallow depletion region \rightarrow low charge collection efficiency
- Detector element covers only a small fraction of the pixel area

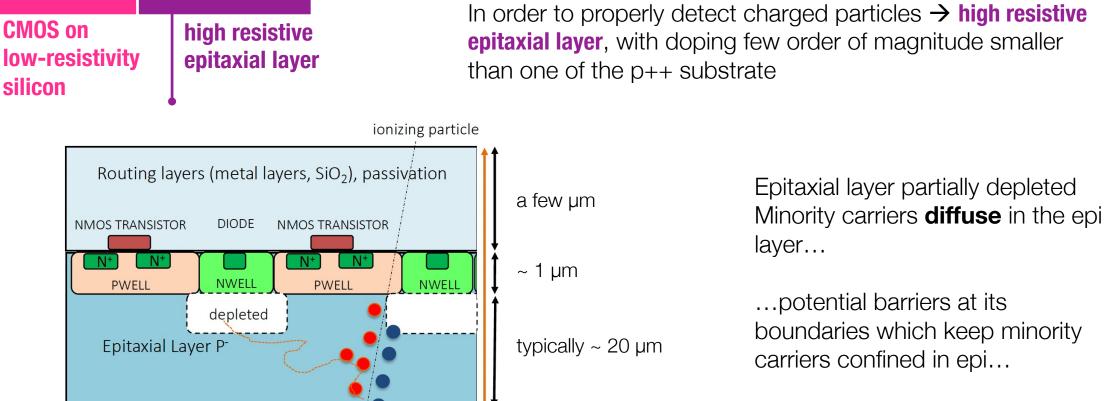
CMOS used in **camera phones**, vehicles, security systems

Future MAPS in ALICE LHOP. 2023,

25th May

F.Carnesecchi,

2


and beyond

ALICE **CMOS MAPS – evolution for charged particles**

Recipe's evolution for CMOS MAPS for charged particles...

Substrate P⁺⁺

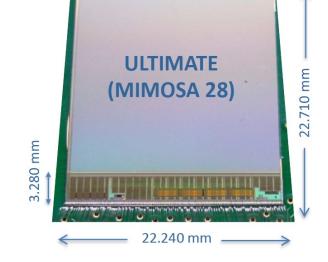
total typically ~ 50 µm

... till they reach the depleted region → drift

N.B. **NMOS transistors in a pwell** \rightarrow to shield the source and drain junctions from the epitaxial layer

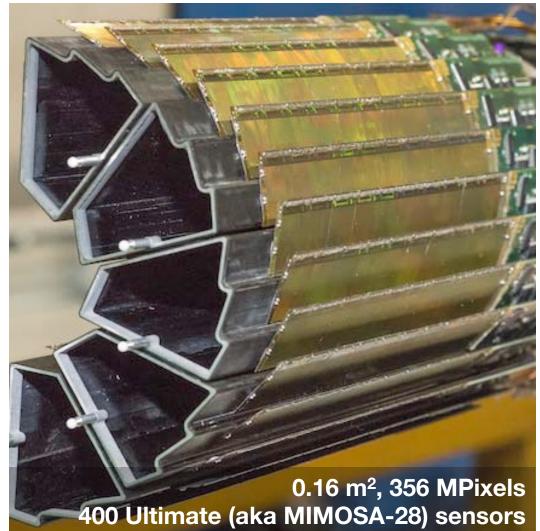
 \rightarrow essential, otherwise these sources and drains would act as collection electrodes

would prevent the nwell from collecting all the signal charge.


silicon

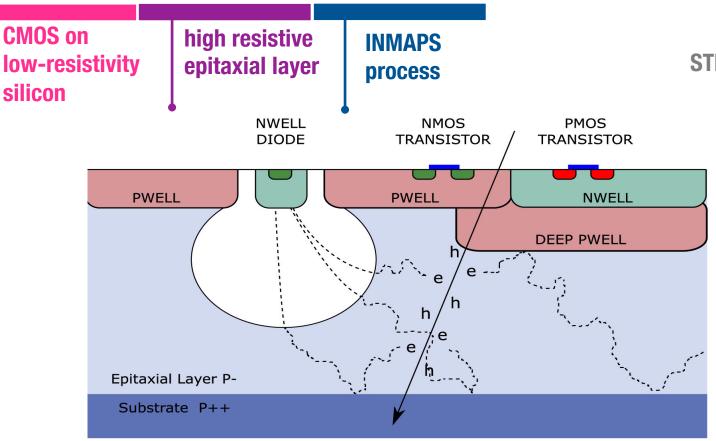
STAR – first application in HEP

Full detector in 2014



MIMOSA-28

high-resistivity p-epi layer The STAR building block


- x/X₀ = **0.39%** (first layer at 28 mm)
- technology node 0.35 μm CMOS
- power ~ 150 mW/cm²
- 18.4 µm pitch
- 20 µm not fully depleted and no reverse bias
 - Charge collected (mostly) by diffusion
 - **NIEL** up to ~ 10^{12} 1MeV n_{eq}/cm²
- in-pixel simple circuit: 3T structure

Physics Runs in 2015-2016

CMOS MAPS – INMAPS process

Recipe's evolution for CMOS MAPS for charged particles...

2008, https://doi.org/10.3390/s8095336 STFC development, in collaboration with TowerJazz

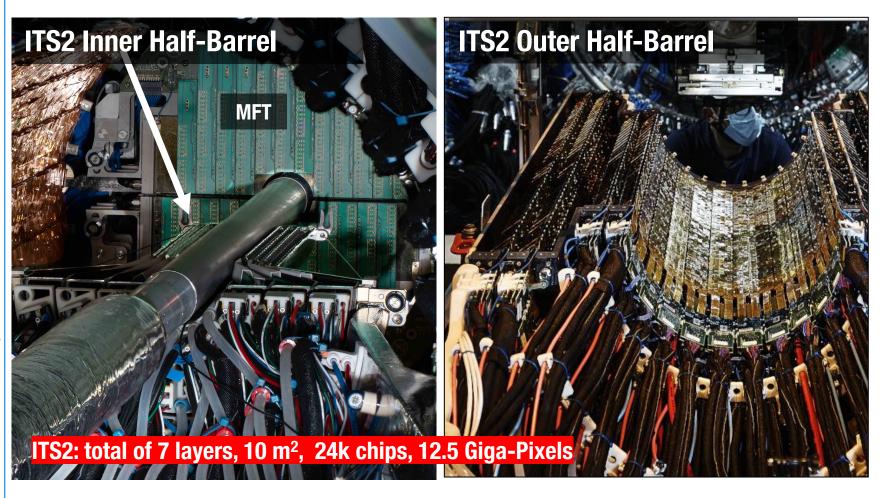
Additional deep P-well :

- no charge collection competition between diode and N-well
- CMOS electronics in pixel

faster

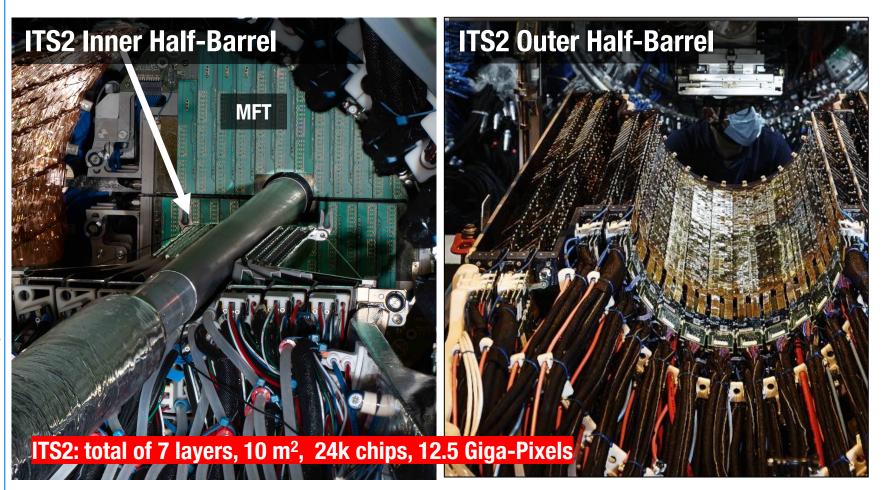
Before

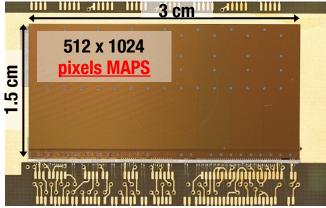
limitation of in-pixel circuitry (only NMOS)


Now

new generation of CMOS APS for scientific applications with **complex CMOS circuitry inside the pixel**

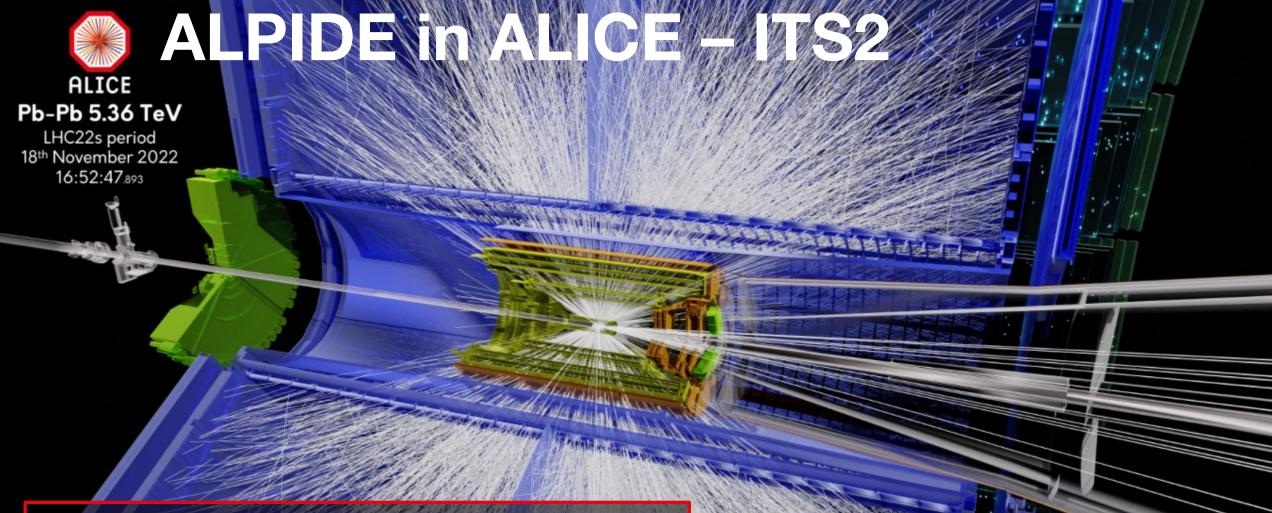
ALPIDE in ALICE – ITS2


First MAPS in HEP with complex sparse readout similar to hybrid sensors Inner Tracking System 2 (ITS2) upgrade – installation during 2021 (LS2)



ALPIDE in ALICE – ITS2

First MAPS in HEP with complex sparse readout similar to hybrid sensors Inner Tracking System 2 (ITS2) upgrade – installation during 2021 (LS2)



ALPIDE, the ITS2 building block

- TJ CMOS 180 nm, high-res. p-type epi layer (25µm)
- Small n-well diode (2µm) \rightarrow low capacitance (~fF)
- **INMAPS**
- Reverse bias voltage
- pixel size ~ 27x29 µm²
- **NIEL**~ $2.7 \ 10^{13} \ 1 \ MeV \ n_{eq}/cm^2$
- 30 nW /pixel (<50 mW/cm²)
- 23 mm from IP
- 0.36% x/X₀/layer, IB

ALPIDEs used also by Muon Forward Tracker in ALICE and in **sPHENIX** with a clone of the Inner **B**arrel

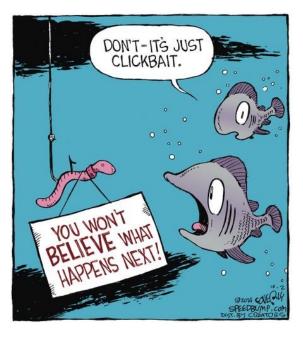
Currently taking data in ALICE (since 2 years):

- with stable operation of all the 24k ALPIDEs
- >99% functional pixels
- very low FHR < 10⁻⁷ hits/(events pixel)

State of art for CMOS MAPS application in HEP

More about ITS2 performances in **"Run 3 Performance of new hardware in ALICE", J. Liu, 23/05 11:30**

What next? What do we need further in HEP?

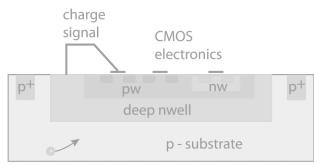

Improve:

- radiation hardness
- position resolution
- material budget
- power consumption
- scalability (larger and larger areas)

How:

- pixel pitch ~10-20 µm
 - also linked to deeper sub micron tech. node \rightarrow 65 nm node
- ► larger wafers: 200 mm (8") → to 300 mm (12")
- stitching

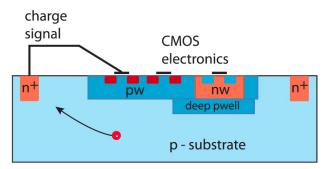
. . .



CMOS MAPS – Fully depleted, small electrode

Recipe's evolution for CMOS MAPS for charged particles...

CMOS on low-resistivity silicon	high resistive epitaxial layer	INMAPS process	Depleted MAPS and new processes


A common path in order to improve the radiation hardness and the time resolution → fully depleted CMOS MAPS

Electronics inside charge collection well

large collection electrode

- → C~300 fF → higher noise O(100 e-) and speed/power penalty
- high and homogeneus electric field
- Large depletion depth
- less trapping -> radiation hard
- possible cross-talk (digital to sensor)

Electronics outside charge collection well

small collection electrode

- → C~3fF → reduced noise O(10 e-) and lower analogue power budget (noise, speed)
- potentially low field regions
- smaller depletion depth, needs process modification
- radiation hardness needs process modification
- less prone to cross-talk

CMOS MAPS – Fully deplet<u>ed, small electrode</u>

PMOS

NWELL

LOW DOSE N-TYPE IMPLANT

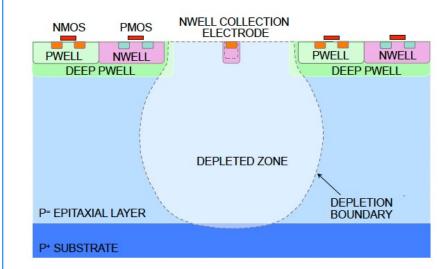
DEEP PWELL

P⁼ EPITAXIAL LAYER

P⁺ SUBSTRATE

NMOS

PWELL


process modification

NWELL

DEEP PWELL

DEPLETION BOUNDARY

PWELL

https://dx.doi.org/10.1016/j.nima.2017.07.046 https://doi.org/10.22323/1.420.0083

Standard ALICE ITS2 type

- partially depleted epi layer
- Partially collected by diffusion → collection time ~30 ns
- Operation up to 2 10¹³ n_{eq}/cm²

Modified with gap planar junction (N-implant) separate from the collection electrode with gap in the low dose n-type implant

NWELL COLLECTION

ELECTRODE

DEPLETED ZONE

more volume can be depleted

- Fully operational up to 10¹⁵ n_{eq}/cm²
- better charge collection in lateral direction

ightarrow Excellent co-operation with foundry

R&D started already by ALICE and followed by MALTA, CLICpix, FastPix

Charge

Charge sharing

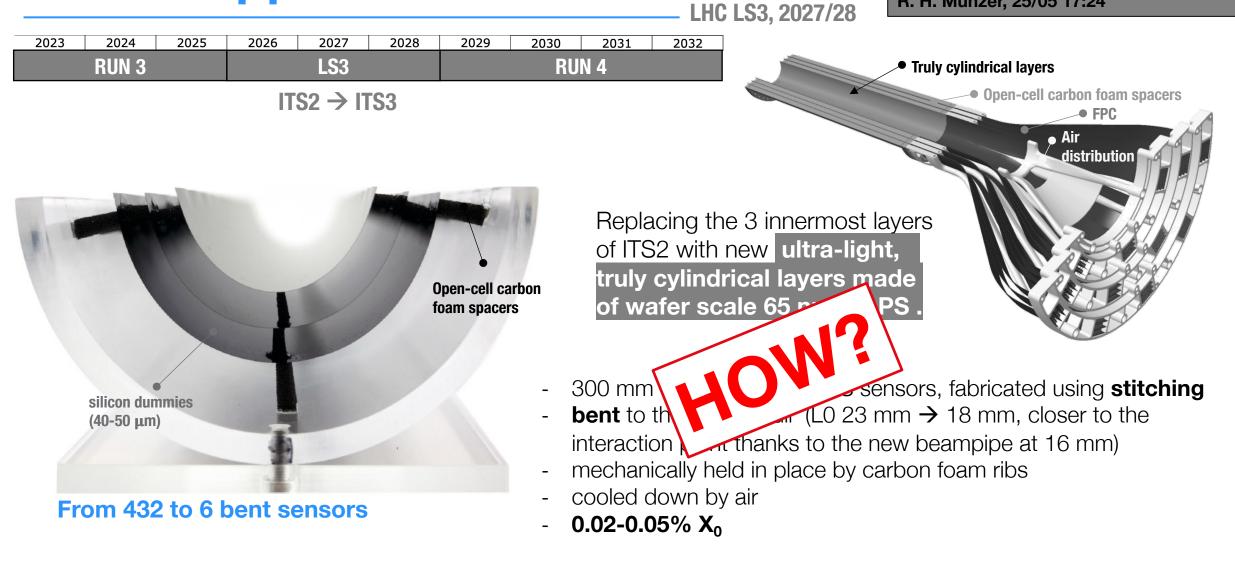
Charge Collection efficiency and speed

10

ALICE Applications – ITS3

From 432 to 6 bent sensors

More about ITS3 performances and physics motivations in **"ALICE upgrades"**, **R. H. Munzer, 25/05 17:24**



- bent to the target radii (L0 23 mm → 18 mm, closer to the interaction point thanks to the new beampipe at 16 mm)
- mechanically held in place by carbon foam ribs
- cooled down by air
- 0.02-0.05% X₀

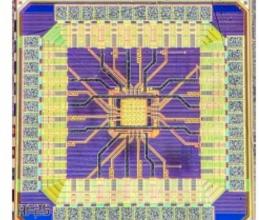
N.B. Other experiments even beyond LHC already shown interest in this development
→ ITS3 R&D will pave the way for an ultimate vertex detector concept

ALICE Applications – ITS3

More about ITS3 performances and physics motivations in **"ALICE upgrades", R. H. Munzer, 25/05 17:24**

N.B. Other experiments even beyond LHC already shown interest in this development → ITS3 R&D will pave the way for an ultimate vertex detector concept

CMOS MAPS – 65 nm


Recipe's evolution for CMOS MAPS for charged particles...

CMOS on low-resist silicon	ivity	high resistive epitaxial layer	INMAPS process	Depleted MAPS and new	to 65 nm	First submission in the Towe Partners Semiconductor (TPSCo) 65 nm technology
silicon				processes	technology	

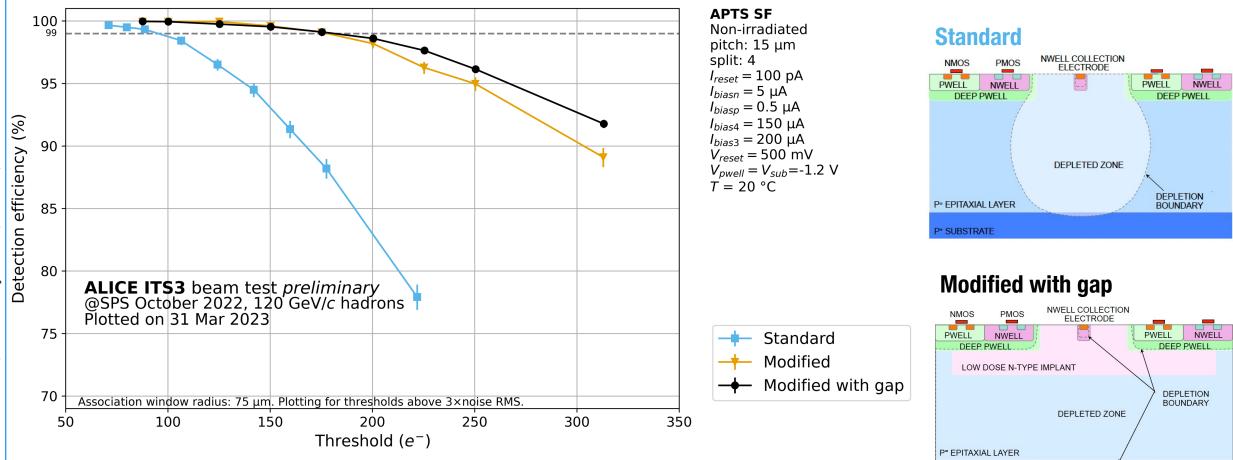
Verification of the technology for charge collection efficiency, detection efficiency, radiation hardness:

- larger wafers: 300 mm (instead of 200 mm), single "chip" is enough to equip an ITS3 half-layer
- smaller feature sizes to: lower power consumption, increase spatial resolutions, increase in-pixel circuitry

- **matrix**: 6x6 pixels
- readout: direct analogue readout of central 4x4
- **pitch**: 10, 15, 20, 25 μm
- **process**: 3 variants

DPTS

- ▶ matrix: 32x32 pixels
- readout: async. digital with ToT
- pitch: 15 µm
- **process**: 1 variant


E

S

12

CMOS MAPS – 65 nm

Excellent detection efficiency over large threshold range for modified processes

* SUBSTRATE

Beam test results

CMOS MAPS – 65 nm

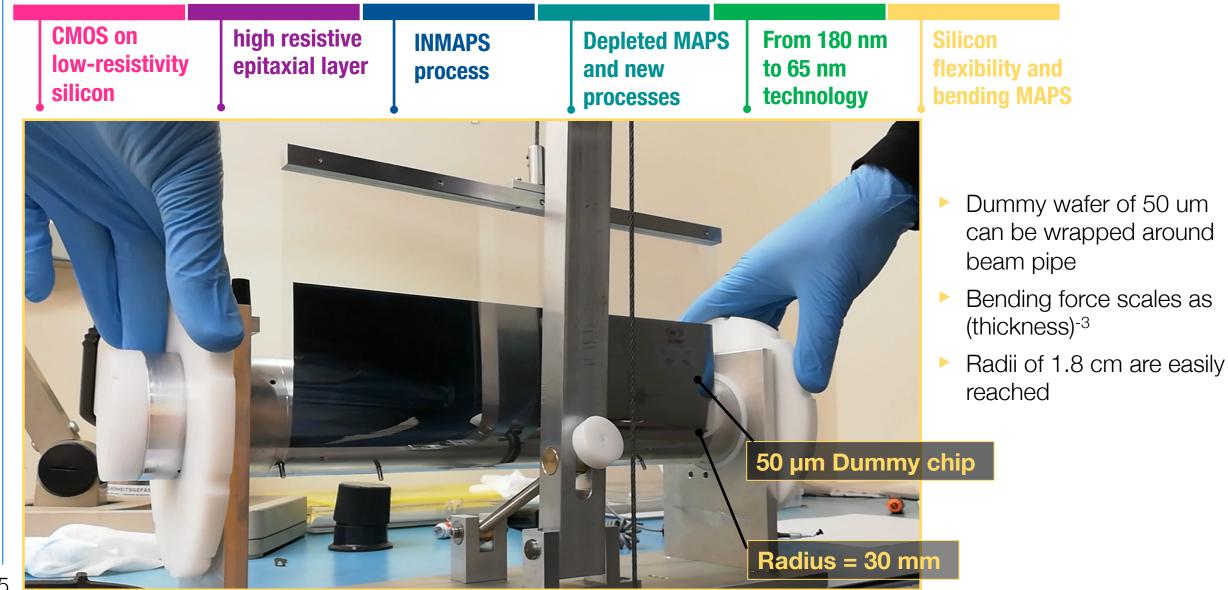
Process: modified with gap

-https://arxiv.org/abs/2212.08621

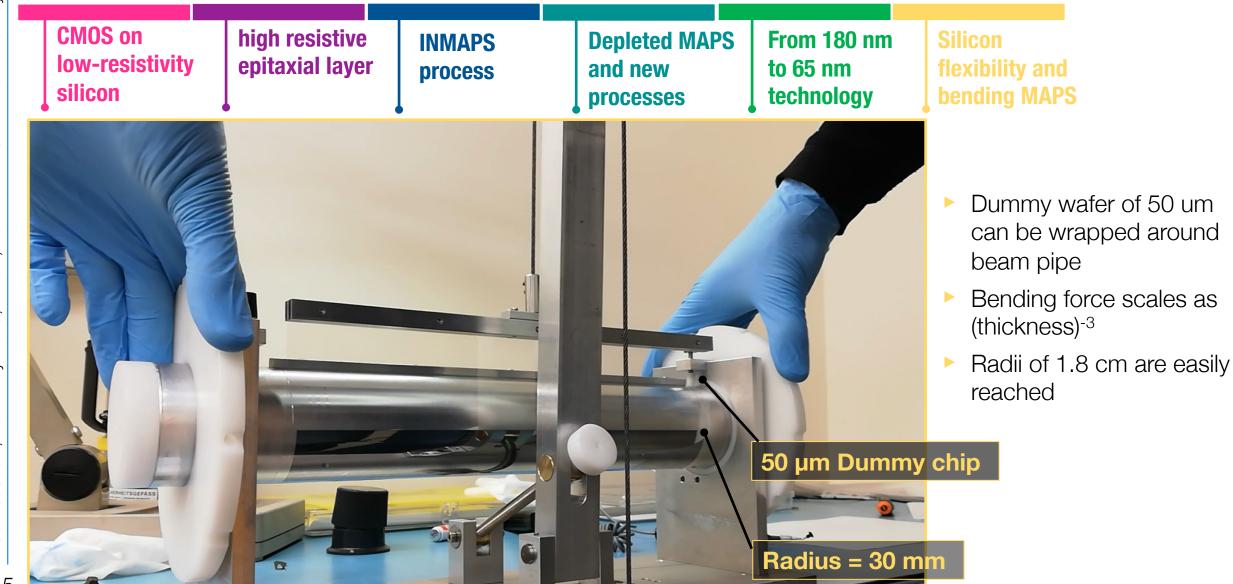
14


At ALICE-ITS3 requirements irradiation level slightly larger fake rates, but still largely operational At 10¹⁵ n_{eq}/cm² → ~99% efficiency reached at 20°C **Beam test results** 10^{3} 100 ALICE ITS3 doi.org/10.48550/arxiv.2212.08621 <u>At 20°C</u> DPTS, $V_{sub} = -2.4 V$ 10² 95 Detection efficiency (%) г Fake-hit rate S Non-irradiated efficiency 90 10¹ (pixel⁻ 10^{13} 1MeV n_{eq} cm⁻² $10^{14} \, 1 \text{MeV} \, n_{eq} \, \text{cm}^{-2}$ 10⁰ 85 rate 10¹⁵ 1MeV n_{eq} cm⁻² Detection ke-hit 10 kGy 10^{-1} 80 - 100 kGy 🛏 10 kGy + 10¹³ 1MeV n_{ea} cm⁻² FHR ITS3 requirement 10-2 75 **ITS3 requirement** FHR measurement sensitivity limit 10-3 70 125 200 225 250 75 100 150 175 275 300 325 350 Threshold (via V_{casb}) (e^-)

25th May 2023, LHCP, Future MAPS in ALICE and beyond


F.Carnesecchi,

CMOS MAPS – Silicon flexibility and bending



CMOS MAPS – Silicon flexibility and bending

CMOS MAPS – Silicon flexibility and bending

ALICE **CMOS MAPS – Silicon flexibility and bending**

500

Bending of 180 and 65 nm MAPS

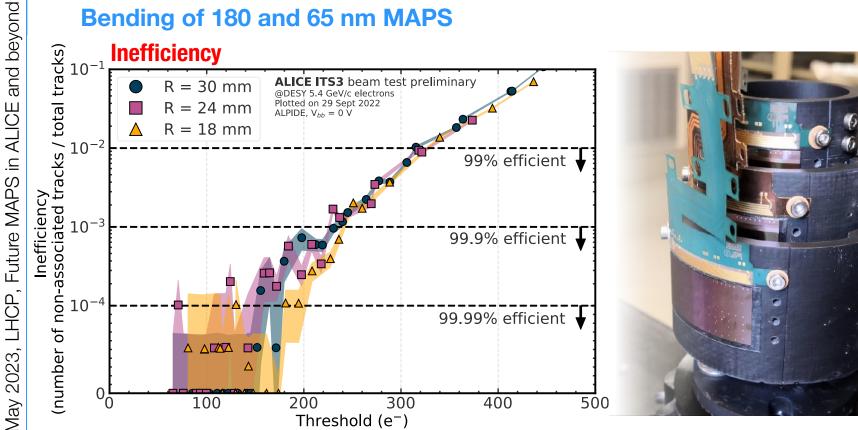
100

200

total tracks) Inefficiency ALICE ITS3 beam test preliminary = 30 mm 24 mm ALPIDE, $V_{hh} = 0$ R = 18 mmacks 99% efficient Inefficiency issociated tra .0 99.9% efficient non 99.99% efficient of (number

Functional chips **ALPIDEs (180 nm)** have been bent routinely

Threshold (e⁻)

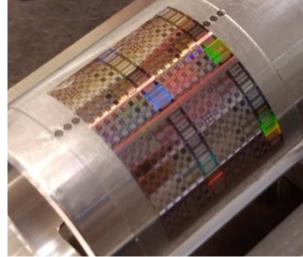

300

Several ways were explored (bending before/after bonding, different jigs)

400

- The chips continue to work (doi:10.1016/j.nima.2021.166280)
- Full mock-up called "µITS3": 6 ALPIDE chips, bent to ITS3 target radii
 - Beam test on µITS3: uniform among different radii

ALICE **CMOS MAPS – Silicon flexibility and bending**



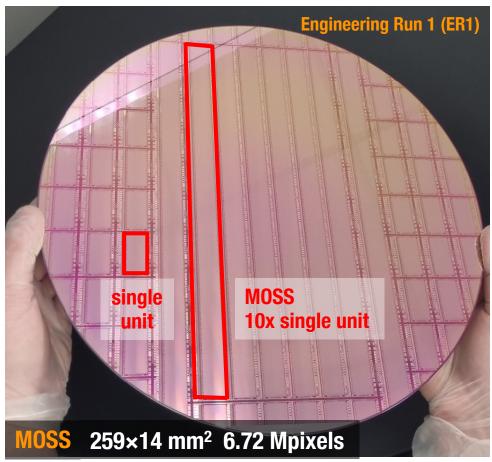
Functional chips **ALPIDEs (180 nm)** have been bent routinely

The chips continue to work (doi:10.1016/j.nima.2021.166280)

Several ways were explored (bending before/after bonding, different jigs)

TPSCo 65nm chips bending of both APTS and DPTS

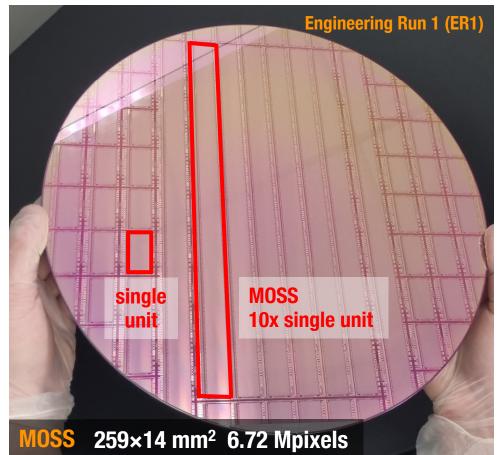
- special boards developed to bond on the bent structure
- tests ongoing
 - so far all test structures are working
 - more measurements and sample preparation ongoing


F.Carnesecchi, 25th May 2023, LHCP 16

CMOS MAPS – Wafer scale sensors : stitching

	CMOS on low-resistivity	,	high resistive epitaxial laye		INMAPS	Depleted MAP	S			Silicon		Wafer scale
	silicon			'	process	and new processes		to 65 nm technology		flexibility and bending MAPS	s	sensors: stitching
(•		processes	•		•	boliding in A		outoning

- For large area (ALICE-ITS3 280 x 94 mm) \rightarrow stitching needed:
 - aim at a realization of a true single wafer scale sensor
- Eliminates the need of tiling chips on circuit boards
- First wafers just received (ALICE-ITS3) \rightarrow MOSS (asses the yield of wafer-scale stitched sensors, testability, not yet as sensor for ITS3)
 - First CMOS MAPS for HEP using stitching
 - to be thinned, diced...and tested


CMOS MAPS – Wafer scale sensors : stitching

Recipe's evolution for CMOS MAPS for charged particles...

CMOS on low-resistivity silicon	l ŭ	resistive axial layer	INMAPS process	Depleted MAPS and new processes	S	From 180 nm to 65 nm technology	Silicon flexibility and bending MAP	Wafer scale sensors: stitching

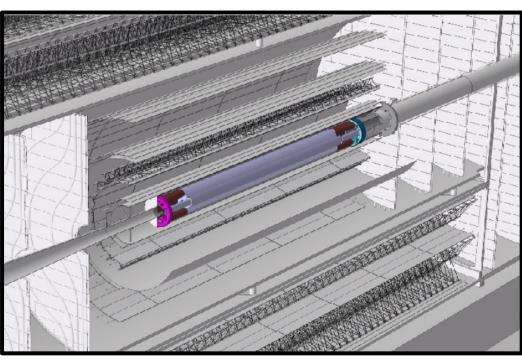
- For large area (ALICE-ITS3 280 x 94 mm) \rightarrow stitching needed:
 - aim at a realization of a true single wafer scale sensor
- Eliminates the need of tiling chips on circuit boards
- First wafers just received (ALICE-ITS3) \rightarrow MOSS (asses the yield of wafer-scale stitched sensors, testability, not yet as sensor for ITS3)
 - First CMOS MAPS for HEP using stitching
 - to be thinned, diced...and tested

Very first single unit (single-stitching) tested (two weeks ago!) in a probe station \rightarrow is alive! can be powered and responds correctly to slow control commands

F.Carnesecchi, 25th May 2023, LHCP, Future MAPS in ALICE and beyond

ALICE ALICE applications – ALICE 3 LHC LS4, 2033/34

More about ALICE3 performances and physics motivations in **"ALICE upgrades"**, **R. H. Munzer, 25/05 17:24**


2030 2031 2032 2035 2033 2034 2036 **RUN4 RUN 5** LS4 **ALICE 3 :** a next-generation LHC heavy-ion (soft QCD) experiment 800cm 160cm

Outer tracker with around 60 m² MAPS tracker

- order of magnitude larger than ITS2
- large coverage: $\pm 4\eta$
- high-spatial resolution: $\approx 5 \,\mu m$
- very low material budget: X/X_0 (total) $\leq 10\%$
- low power consumption $\approx 20 \text{ mW/cm}^2$

ALICE ALICE Applications – ALICE 3 LHC LS4, 2033/34

More about ALICE3 performances and physics motivations in **"ALICE upgrades"**, **R. H. Munzer, 25/05 17:24**

Innermost layers (vertex detector)

- will be based on wafer-scale, ultra-thin, curved MAPS "iris tracker" → ITS3 like BUT in vacuum
 - → 3 layers inside beampipe, retractable configuration

clear extension of ITS3 developments

pushes the **technology** on a number of fronts

- distance from interaction point: 5 mm
- radiation hardness ~ 10^{16} 1MeV n_{eq}/cm^2
- spatial resolution: $\approx 2.5 \ \mu m$
- material budget: $\approx 0.1\%X_0$ /layer

CMOS MAPS are ideal devices for vertexing

Low material budget (thin + low power), high resolution (small pixels), large surfaces (commercial process), non-planar geometries (thin silicon is flexible)

Impressive progress over the last decade

Already several applications, e.g. STAR 2015 and ALICE ITS2 2021, and improvements on radiation hardness, low noise, and speed

ALICE ongoing R&D on bending, deeper sub micron tech. node (65 nm) and stitching (wafer scale)

Big push from ITS3 (2026): new inner-most 3 layers, wafer-scale, bent, stitched sensors \rightarrow paves the way for future experiments like ALICE 3 (2033): 60 m² silicon-only

Lot of interest on ALICE ITS3 developments from other experiments

Similarly to what happened with ITS2