

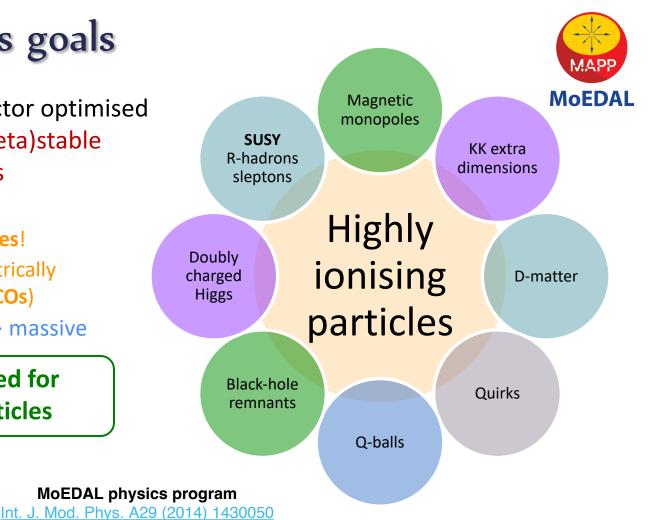
MoEDAL-MAPP – Detectors specialised in LLP searches

Vasiliki A. Mitsou for the MoEDAL-MAPP Collaboration

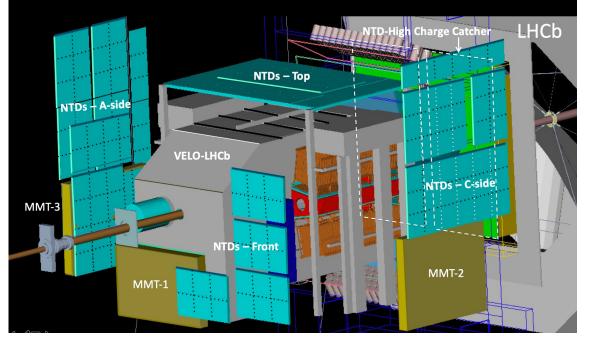
LHCP 2023

11th Large Hadron Collider Physics Conference Belgrade, 22-26 May, 2023

MoEDAL – Monopole & Exotics Detector At LHC

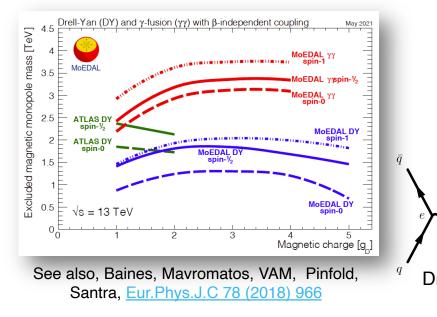

Optimised for anomalously ionising (meta)stable particles

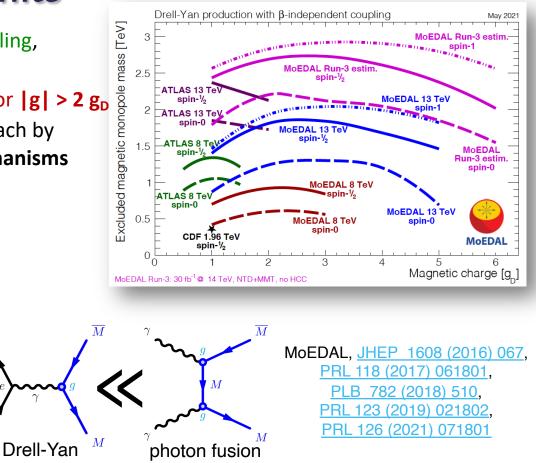
LHC's first dedicated *search* experiment (approved 2010)


MoEDAL physics goals

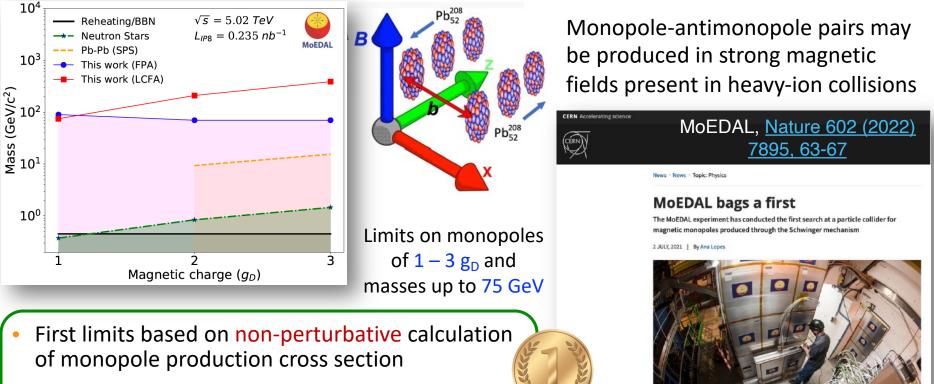
- MoEDAL baseline detector optimised for the detection of (meta)stable highly ionising particles
 - high charges (high z)
 - magnetic → monopoles!
 - electric → Highly Electrically Charged particles (HECOs)
 - slow moving (**low** β) \Rightarrow massive
- MAPP upgrade designed for minimally ionising particles

Baseline MoEDAL detector



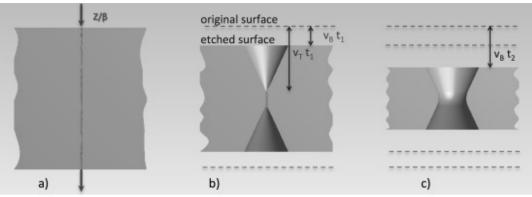

- DETECTOR SYSTEMS
- ① Nuclear Track Detectors (NTD)
- Monopole Trapping detector
 (MMT) aluminum bars
- ③ **TimePix** radiation background monitor

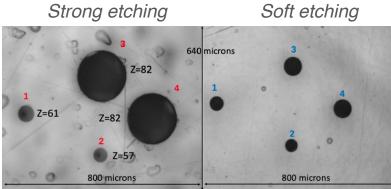
- Mostly passive detectors; no trigger; no readout
- Permanent physical record of new physics
- No SM physics backgrounds


Magnetic monopole limits

- Novelties in models: β-dependent coupling, spin-1 monopoles, γγ fusion
- MoEDAL set world-best collider limits for |g| > 2 g_D
- Overall, MoEDAL achieved extended reach by combining Drell-Yan and γ-fusion mechanisms

Monopoles via thermal Schwinger mechanism


 First direct search sensitive to finite-size monopoles


The MoEDAL experiment, seen here during installation in the LHC tunnel. (image: CERN

High Electric Charge Objects (HECOs)

- First NTD analysis for MoEDAL
- Prototype NTD array of 125 stacks (7.8 m²) in Run-1
- NTDs etched and scanned

Calibration with 158 A GeV Pb⁸²⁺ and 13 A GeV Xe⁵⁴⁺ ion beams

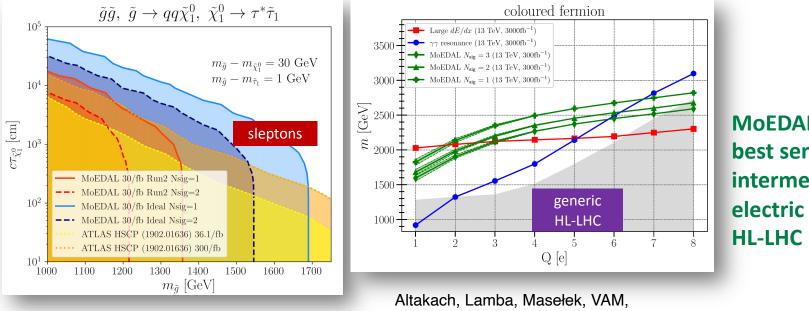
No HIP candidates found in the NTDs stacks

MoEDAL, Eur.Phys.J.C 82 (2022) 694

HECOs results

- Limits on HECOs with electric charges in the range 15e – 175e and masses from 110 – 1020 GeV
- Upper limits on production cross section ~ 30–70 pb
- Better sensitivity expected in ongoing
 Run 2 analysis
 - higher c.m.s. energy: 13 TeV
 - larger integrated luminosity
 - larger exposed NTD surface
 - Iower CR39 Z/8 threshold than Macrofol

Non-perturbativity of large coupling can be tackled by appropriate **resummation** [Alexandre, Mavromatos, Musumeci, VAM]


MoEDAL HECOs limits are the strongest to date, in terms of charge, at any collider experiment

Poster by Emanuela Musumecí

Electrically charged particles with Drell-Yan production June 2022 2.4 Only published ATLAS/CMS results shown Excluded mass [TeV] 2.2 MoEDAL 8 TeV ATLAS 13 TeV 2 MoEDA CMS 7+8 TeV 1.8 spin-0 1.6 spin-1/2 spin-1 1.2 0.8 0.6 0.4 0.2 40 60 120 20 80 100 140 160 180 Electric charge [Izl]

"Low" electric charges

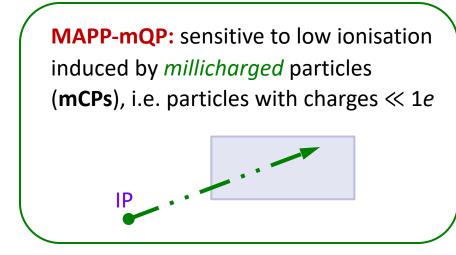
- Supersymmetric singly charged LLPs: sleptons, R-hadrons, charginos
- Generic multiply charged particles
- Also, models of v masses → 2-, 3-, 4-ply charged [Hirsch et al, EPJC 81 (2021) 697]

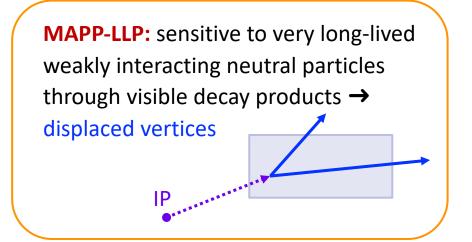
Felea, VAM et al, EPJC 80 (2020) 431

Altakach, Lamba, Masełek, VAM, Sakurai, <u>EPJC 82 (2022) 848</u> MoEDAL has the best sensitivity at intermediate electric charges at HL-LHC

VELO-top NTD array installed

Upgraded MoEDAL installed for Run-3

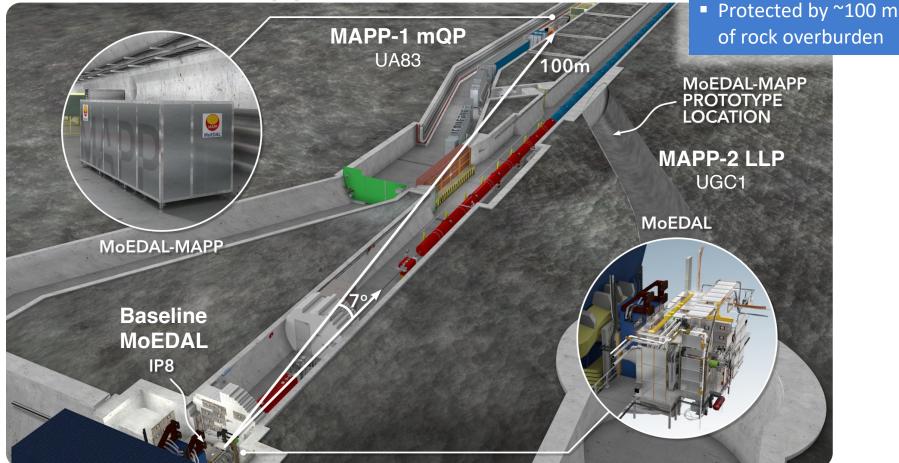

- Upgrades to Run-2 MoEDAL
- Completed in March 2023


Forward MMT box reconfigured

TimePix3 chips connected to LHC clock

NTD stacks point to IP

MAPP – MoEDAL Apparatus for Penetrating Particles

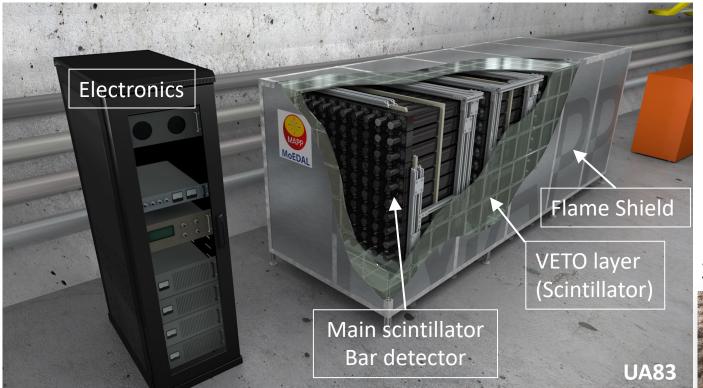


- Phase-1 *approved* by CERN Research Board in 2021
- Phase-1 for Run-3 (2022–2025): MAPP-mQP installation in UA83 is underway
- Phase-2 HL-LHC (2029 –): Reinstall Phase-1 in UA83 and add MAPP-LLP in UGC1

MoEDAL-MAPP flythrough: http://www.physixel.com/JLP_MAPP/MAPP_FlyOver1.mp4 Pinfold, Phil.Trans.Roy.Soc.Lond.A 377 (2019) 20190382

■ Talk by <u>Hualin Mei</u> in BSM2 FIPs session

MAPP location(s)



12

At forward region

w.r.t. beam axis

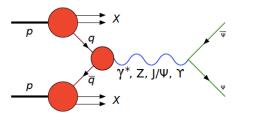
MAPP-mQP Phase-1 detector concept

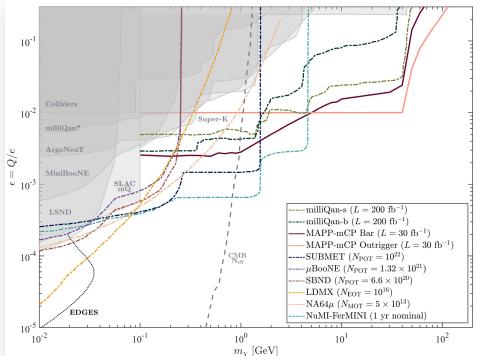
Prototype mQP in 2017 in UGC1 gallery

- 400 scintillator bars (10×10×75 cm³) in 4 sections readout by PMTs
- Protected by a hermetic VETO counter system

MAPP-mQP Phase-1 installation

UA83, March 2023




- Next installation period during Technical Stop in June 2023
- Data taking expected to start in July 2023

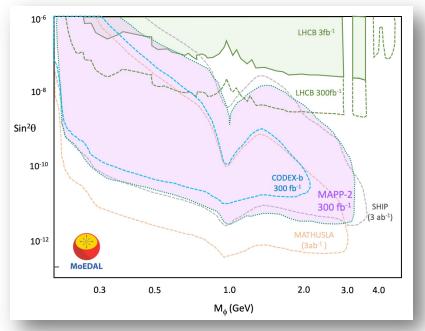
Millicharged particles

- mCP generated by massless dark photon, kinetically mixed with SM, that couples to millicharged χ
- Production through meson decays also possible
 - only Drell-Yan production shown here
- MAPP sensitive to heavy neutrino with large electric dipole moment, experimentally similar to mCP [Frank et al, <u>Phys.Lett.B 802 (2020) 135204</u>]
- Millicharged strongly interacting DM (mSIDM)
 - mCPs can account for a fraction of DM abundance
 - can escape from underground direct-detection detectors
 - MAPP mCP results can be recasted to mSIDM

Talk by Hualin Mei in BSM2 FIPs session

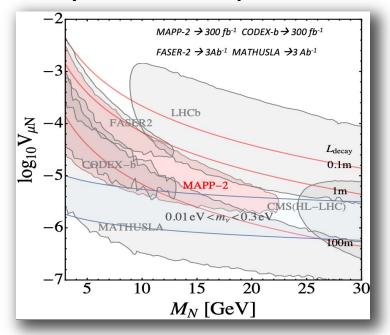
MoEDAL contribution to Snowmass, <u>arXiv:2209.03988</u>

Phase-2: MAPP-2 upgrade for HL-LHC



- The UGC1 gallery will be prepared during Long Shutdown 3 prior to HL-LHC
- MAPP-2 detector extends to the full length of the UGC1 gallery
- Detector technology: large scintillator tiles with optical fibre readout
- Tracking detectors formed by 3 or 4 hermetic containers one within the other lining UGC1 walls

(14.57,-2.00,-28.63)


MAPP-LLP – dark matter & heavy neutrinos

Dark Higgs scenario

Dark Higgs ϕ mixes with SM H^0 (mixing angle $\vartheta \ll 1$), leading to exotic $B \rightarrow X_s \phi$ decays with $\phi \rightarrow \ell^+ \ell^-$

Heavy neutrino via Z' production

Pair production of RH neutrinos from the decay of a Z' boson in the gauged *B-L* model

MoEDAL contribution to Snowmass, <u>arXiv:2209.03988</u>

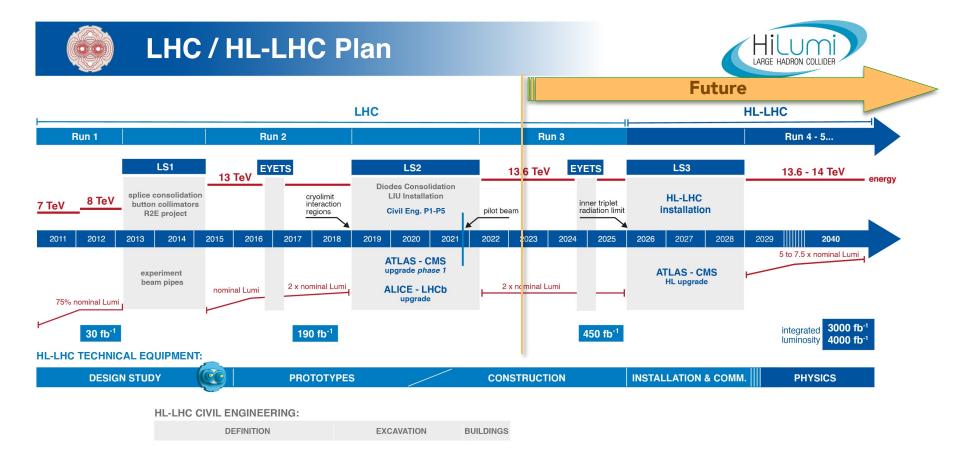
Summary & outlook

- Exciting results by MoEDAL
 - sole contender in high magnetic charges
 - sole dyon search in accelerator experiment
 - first search for monopoles produced via Schwinger mechanism
 - entered the arena of *electrically* charged particles
- Upcoming results
 - CMS beam pipe analysis → constrain very high magnetic charges
 - Second NTD analysis → improved sensitivity to electric charges

Future perspectives

- MoEDAL baseline redeployed for Run-3 with improved geometry
 - planned to operate during HL-LHC
- MAPP will extend reach to **millicharged** particles and **neutral long-lived particles**
 - Phase-1 MAPP installation ongoing
 - expected to start data-taking in 2023

MoEDAL web page: https://moedal.web.cern.ch/



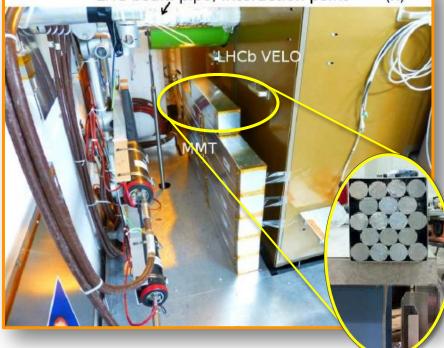
Results

- 2016 First monopole results @ 8 TeV F CERN Press Release
 JHEP 1608 (2016) 067 [arXiv:1604.06645]
- 2017 First monopole results @ 13 TeV Phys.Rev.Lett. 118 (2017) 061801 [arXiv:1611.06817]
- - β-dependent coupling
- 2019 MMT results Phys.Rev.Lett. 123 (2019) 021802 [arXiv:1903.08491]
- 2020 MMT search for Dyons ← FIRST in colliders
 Phys.Rev.Lett. 126 (2021) 071801 [arXiv:2002.00861]
- 2021 Schwinger thermal production ← FIRST <u>Nature 602 (2022) 7895, 63 [arXiv:2106.11933]</u>
- 2021 NTD & MMT ← FIRST NTD analysis <u>arXiv:2112.05806</u>
 - First limits in highly electrically charged objects

LHC & High Luminosity LHC (HL-LHC)

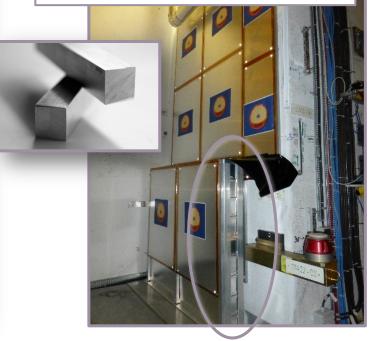
Run-2 NTD deployment

Low-threshold NTD NTDs sheets kept in boxes mounted onto cavern walls


MoEDAL

MMTs deployment

2012


11 boxes each containing 18 Al rods of 60 cm length and 2.54 cm diameter (**160 kg**)

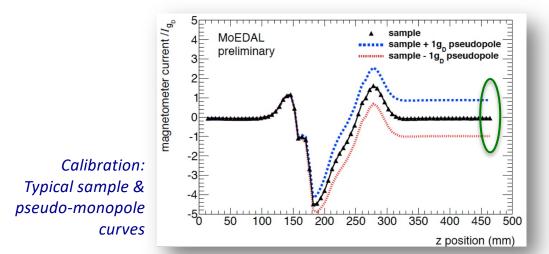
LHC beam pipe; interaction point \rightarrow (x)

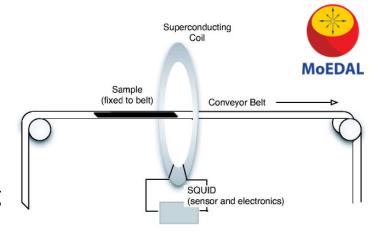
2015-2018

- Installed in forward region under beam pipe & in sides A & C
- Approximately **800 kg** of aluminium
- Total 2400 aluminum bars

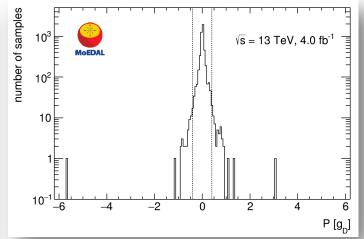
80

0

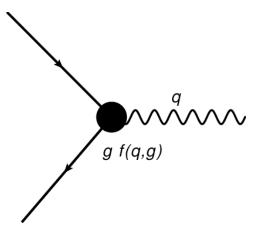

6


C

MOEDAL

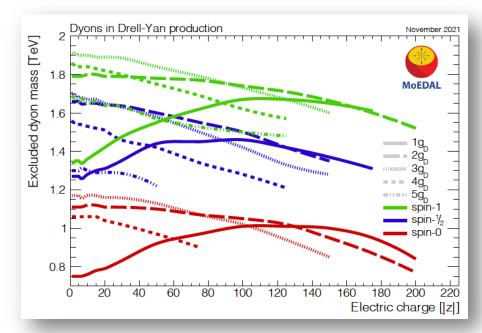

MMT scanning

- Monopoles can bind to nuclei and get trapped
- MMTs analysed in superconducting quantum interference device (SQUID) at ETH Zurich
- **Persistent current:** difference between resulting current after and before
- Outliers are scanned several times further


SQUID analysis – Persistent current after first two passages for all samples

Magnetic monopoles in a nutshell

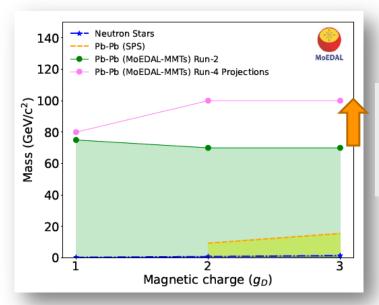
- Why? Because they symmetrise Maxwell's equations
 - electric \leftrightarrow magnetic charge duality
- Single magnetic charge (Dirac charge): g_D = 68.5e
 - higher charges are integer multiples of Dirac charge:
 - $g = ng_D, n = 1, 2, ...$
 - if carries electric charge as well, is called **Dyon**
- Photon-monopole coupling constant
 - large: g/hc ~ 20 (precise value depends on units)
- Dirac monopole is a *point-like* particle; GUT monopoles are *extended* objects
 - production of composite monopoles exponentially suppressed by $e^{-4/\alpha}$
- Monopole spin & mass is not determined by theory → free parameters


For a review on monopole theory and searches: Mavromatos & VAM, Int.J.Mod.Phys.A 35 (2020) 2030012

Dyons: electric & magnetic charge

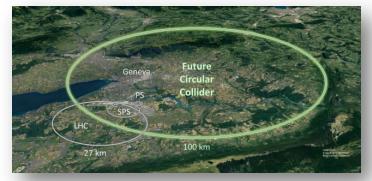
- MMT scanning searching for captured dyons
- Mass limits 750-1910 GeV set for dyons with
 - up to 5 Dirac magnetic charges (5g_D)
 - electric charge 1e 200e
- Excluded cross sections as low as 30 fb
- Previous searches for highly ionising particles would, in principle, also have sensitivity to dyons
 - caution on behaviour under magnetic field

First explicit accelerator search for direct dyon production!



MoEDAL, Phys.Rev.Lett. 126 (2021) 071801

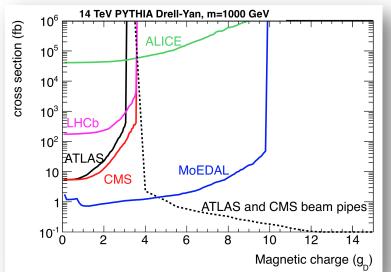
Monopoles in Schwinger mechanism – Future



- Run-1 CMS beam pipe analysis in heavy-ion run
- HL-LHC projection for MoEDAL's MMTs
 - Conservative theoretical assumptions
 - Nuclear track detectors not included in projection
 - Assuming 2.5 nb⁻¹ Pb-Pb collisions at $Vs_{NN} = 5.52$ TeV

~20 GeV increase in sensitivity in HL-LHC heavy-ion run

Opportunities for new physics searches with heavy ions at colliders, Snowmass 2021 white paper, <u>arXiv:2203.05939</u>

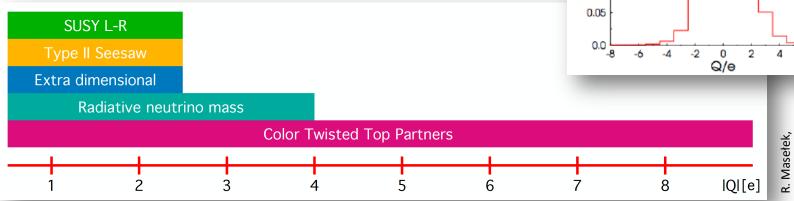

For FCC : $\sqrt{s_{NN}} \sim 40 \text{ TeV}$ $\Rightarrow M \gtrsim 600 \text{ GeV}$

Theoretical improvements in semiclassical and fully classical approaches

CMS beam pipe

Beam pipe

- most directly exposed piece of material
- covers very high magnetic charges
- 1990's: materials from CDF, D0 (Tevatron) and H1 (HERA) subject to SQUID scans for trapped monopoles
- 2012: first pieces of CMS beam pipe tested [EPJC72 (2012) 2212]; far from collision point
- Feb 2019: CMS officially transfers ownership of the Run-1 CMS beam pipe to MoEDAL
- Beam pipe scanned with SQUID at ETH Zurich
- Analysis for Pb-Pb collision data ongoing
- Results to be released soon



Multiply charged quasi-stable particles

- Highly Electrically Charged Objects (HECOs) predicted in many scenarios of physics beyond the SM
 - finite-sized objects (Q-balls)
 - condensed states (strangelets)
 - microscopic black holes (through their remnants)

• •••

- They eventually decay into other particles
- Detected by high ionisation

6

DISCRETE2020-2021

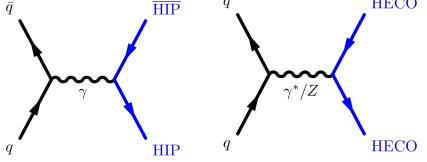
8

Black-hole remnant charges

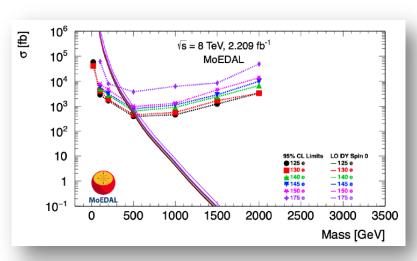
LHC @ 14 TeV

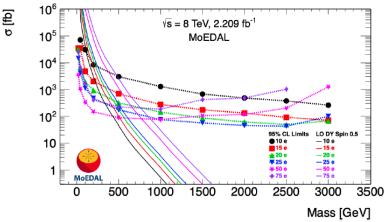
0.3

0.25


10.2 V 0.15

0.1


29


NTD results on HECOs

- Drell-Yan production

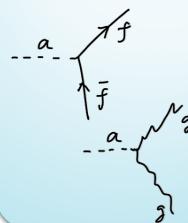
- non-perturbativity of large coupling can be tackled by appropriate **resummation** [Alexandre, Mavromatos, Musumeci, VAM, *in progress*]
- Limits set on HECO pair production with cross section ~ 30 – 70 pb

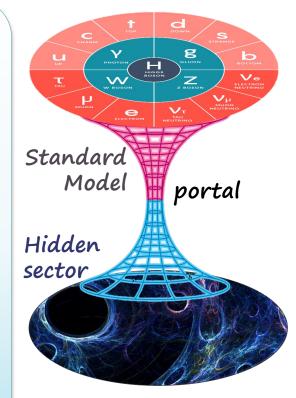
Hidden sector – Feebly Interacting Particles (FIPs)

Dark vectors ("Dark Photons")

- adding U(1) gauge group to A' Y/Z
 SM, kinetic mixing with γ/Z
- light neutral meson decays, millicharged particles

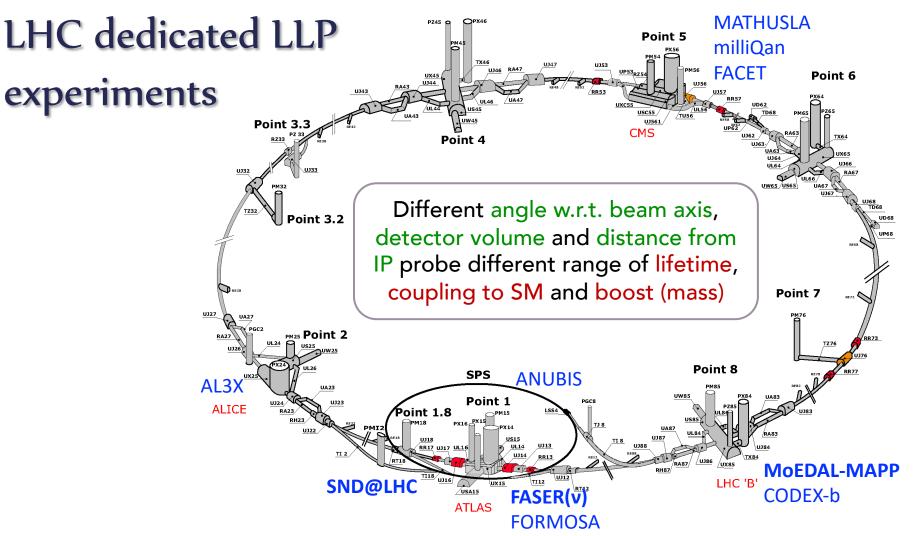
Dark scalars ("Dark Higgs")

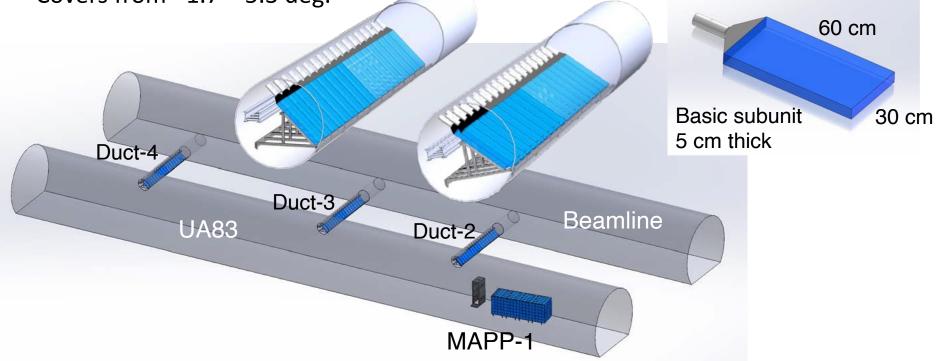

- neutral singlet scalers that couple to the SM Higgs field
- produced in penguin decays of K, D, B mesons

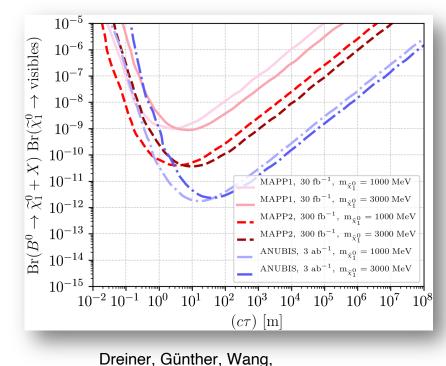

Heavy neutral leptons ("sterile neutrinos")

- explain SM v masses (seesaw), DM, BAU
- weak semi-leptonic decays of hadrons, W, Z

Axion-like particles ("ALPs")


- solution of the strong CP problem
- generalisation of the axion model in MeV-GeV mass range

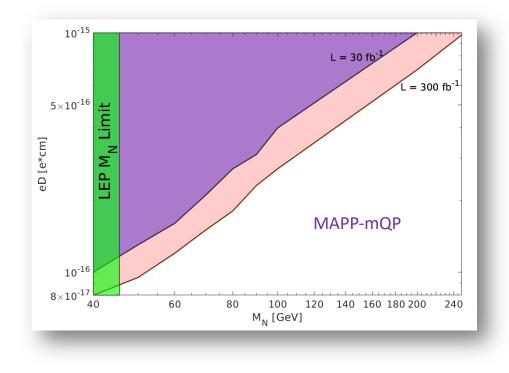

For a review on LLP experiments, see: VAM, MG16 procs. arXiv:2111.03036


The MAPP-1 Outrigger Detector

- To increase the acceptance of MAPP-1 at higher mass & larger fractional charge
- Size of the scintillator "planks" 6m × 0.6m × 5cm, inclined at 45 deg.
- Covers from ~1.7 5.3 deg.

R-parity violating supersymmetry

If RPV coupling, λ , λ' , λ'' small enough, the (N)LSP may be long lived

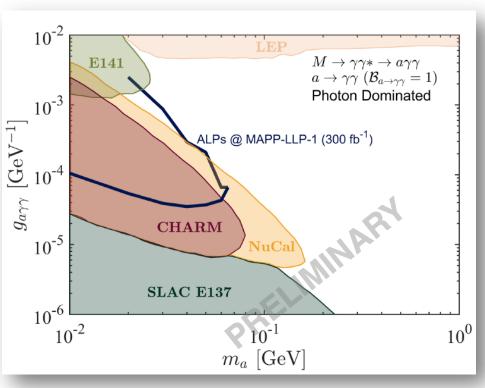


PRD 103 (2021) 075013

 $\tilde{\chi}_1^0 \rightarrow \text{charged}$

 $\begin{array}{lll} \lambda'_{P} \mbox{ for production } & \lambda'_{131} \\ \lambda'_{D} \mbox{ for decay } & \lambda'_{112} \\ \mbox{Produced meson(s) } & B^{0}, \bar{B}^{0} \\ \mbox{Visible final state(s) } & K^{\pm} + e^{\mp}, K^{*\pm} + e^{\mp} \\ \mbox{Invisible final state(s) via } \lambda'_{P} & None \\ \mbox{Invisible final state(s) via } \lambda'_{D} & (K^{0}_{L}, K^{0}_{S}, K^{*}) + (\nu_{e}, \bar{\nu}_{e}) \end{array}$

mCPs – Heavy neutrino with large EDM



Limits that MAPP can place on heavy neutrino production with large EDM at Run-3 and HL-LHC at IP8

Frank et al, Phys.Lett.B 802 (2020) 135204

Axion-like particles (ALPs)

- ALPs produced via rare decays of π and η mesons
- Light ALPs with mass of 10 MeV – 1 GeV with suppressed couplings can be long lived
- They can be detected in MAPP-LLP

95% CL for ALPs @ \sqrt{s} = 14 Tev