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Summary (abstract)

« (Goal: generating joint probabillity distributions

« Two approaches:

« Quantum Generative Adversarial Networks (QGAN)
* Quantum Circuit Born Machines (QCBM)

* Run on trapped ion quantum computers from lonQ for up to 8 qubits

« QOutperform classical generative learning
« (a neural network with the same number of parameters as the quantum circuit)

« Exponential advantage in model's expressivity

* Link to paper: https://arxiv.org/pdf/2109.06315.pdf (2021)
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https://arxiv.org/pdf/2109.06315.pdf

Use Case / Data Set

« Dally returns of stock exchange courses for Apple and Microsoft

Stock courses X space (real data space) U space (copula space)
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Fig. 2: (a) Hypothetical Growth of $10,000 invested in AAPL and MSFT between 2010-2018 (b) Scatter

Plot of Daily Returns (c) Scatter Plot of Data after Probability Integral Transform

=0
£.2 openlab Quantum Journal Club

For this distribution they train

A copula is a multivariate
cumulative distribution
function for which the marginal
probability distribution of each
variable is uniform on the
interval [0, 1].

Copulas are used to
describe/model the
dependence (inter-correlation)
between random variables.
https://en.wikipedia.org/wiki/C

opula (probability theory)
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Qopula Circuit

« Qopula Circuit: A guantum circuit that can represent a maximally entangled
state for every copula
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1. Creation of Nq Bell pairs between two registers Aand B @ 11—, [
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2. Unitaries U_A and U_B act on register Aand B 0 .

1. U_A provides samples for the first random variable
w2 U_Bforthe second
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Quantum Circuit

* One layer of the quantum circiut for U AorU B

(b) RZHRXHRZHRXXHERXX
_ RZHRXHHRZHRXX RXX
n qubits
RZHERXHRZ RXXHERxX

« RXX can be replaced by standard gates

* The number of qubits can be freely chosen and determines the
discretization of the output - More qubits, more accurate results.

« The outputs of the registers are measured to a bitstring ] n_
and transformed to a variable in the domain [0, 1] by: T=srm T Y aadn
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QGAN

« (Generator comprises 6 qubits and 1 layer of ansatz
- 24 trainable parameters

« They add additional random bits to increase the discretization
o X1, x2,x3 =2 x1,x2,x3,x4, ..., x22

* Discriminator has one hidden layer with dimension 32
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GAN vs QGAN

 They make a classical generator with the same number of parameters as
the quantum circuit

* QGAN training: usually parameter-shift rule

« 24 parameters -> 48 circuit executions to compute the gradients (sequentially
computed)

* Too slow -> they use Simultaneous Pertubation Stochastic Approximation
(SPSA) algorithm

« Only 10 circuit execution steps (5 iterations with 2 executions each)
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QGAN Training Algorithm

Algorithm 2: QGAN Training Loop
Result: Trained Generator ¢

[nitialize Network and angles of the Quantum Circuit ansatz;
for i « 1 to iferations do

Run the quantum generator with m shots to generate m measurements ;
Sample minibatch of m data examples {xV)}

Calculate Discriminator Loss Lp

Update the discriminator by descending its stochastic gradient Vs, Lp(8g,64) :
Calculate Generator Loss Lg ;

Update the Quantum Generator by using SPSA algorithm ;
end
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QGAN Training

 More fluctuations
with hardware noise

* 4% depolarizing
noise
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Fig. 4: Plot of the loss functions from QGAN training for N, = 6 qubits.
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Quantum Circuit Born Machine
(QCBM)

 QCBM similar as generator of QGAN but with different training objective

« QCBM minimizes the distance between the output distribution and the
target distribution

 They use Kullback-Leibler (KL) divergence
« KL: quantifies how different two probability distributions are

Algorithm 3: QCBM Training Loop
Result: Trained Quantum Circuit

Initialize angles of the Quantum Circuit ansatz;

for i «— 1 to iterations do
Run the quantum circuit with m shots to generate m measurements ;
Calculate the KL divergence dp; ;
Update the circuit angles by using SPSA algorithm ;

end
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QCBM Training

 (left plot) Noise increases accuracy (green and orange curve with noise are
lower than simulator without noise in blue)
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* (right plots) The more qubits one uses the more unstable the training
becomes due to noise (more gubits lead to more noisy gates)
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Evaluation

Model

Dy (the smaller the better)

Kolmogorov-Smirnov test for evaluation [Parametric model

. . Classical GAN
Table shows average over 20 iterations Qﬁi simulation

o QGAN experiment, QPU cloud
QGAN outperforms GAN OCBM simulation
° QCBM worse then QGAN QUBM experiment, QPU cloud

QCBM experiment, QPU Next Gen

0.0449
0.0363 - 0.0508
0.0320 - 0.0396

0.0352
0.0425 - 0.0520
0.0373 - 0.0515
0.0330 - 0.0510

QGANVSGAN

both models could perform better with deeper networks / circuits
« QGAN model has higher expressivity

 Quantum models can be trained with a higher learning rate than classical GAN what

leads to much less training iterations (in theory faster training)

 QGAN took 2 weeks to complete training on lonQ QPU
b e *  QGAN simulation only 4 minutes, classical GAN 6 minutes
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Conclusion

 The number of parameters scales quadratically with the number of qubits
(undesierable)

* Noise plays a positive role in machine learning models
* QGAN performs best (better than classical GAN and QCBM)

« Since quantum models cannot be tested at scale their efficancy cannot be
nummerically predicted
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