QCD EoS for isospin asymmetric matter

Aritra Bandyopadhyay

Based on PhysRevD.107.074027 [2301.13633 [hep-ph]] In collaboration with A.Avala, R.L.S.Farias, L.A.Hernandez and J.L.Hernandez

Talk prepared for XQCD 23.

Outline

Model 00000000 Thermodynamics and EoS

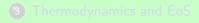
Summary 000

Motivation ●○○○○

Outline

Model 00000000 Thermodynamics and EoS

Summary 000



Model 00000000 Thermodynamics and EoS

Summary 000

Why study isospin asymmetric matter

- Isospin density $n_I \equiv n_u n_d$
- Consequences of isospin asymmetric matter :
 - Excess of neutrons over protons
 - 2 Excess of π_- over π_+
- Relevance?

Motivation ○●○○○

Model 00000000

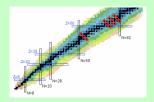
Thermodynamics and EoS

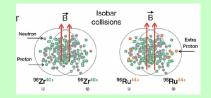
Summary 000

Why study isospin asymmetric matter

- Isospin density $n_I \equiv n_u n_d$
- Consequences of isospin asymmetric matter :
 - Excess of neutrons over protons
 - 2 Excess of π_- over π_+
- Relevance?

Heavy Ion collisions, specifically RHIC isobar program





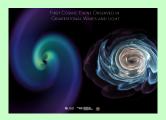
Model 00000000

Thermodynamics and EoS

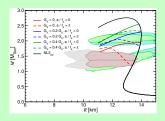
Summary 000

Why study isospin asymmetric matter

- Isospin density $n_I \equiv n_u n_d$
- Consequences of isospin asymmetric matter :
 - Excess of neutrons over protons
 - 2 Excess of π_- over π_+
- Relevance?
 - Heavy Ion collisions, specifically RHIC isobar program
 - Neutron stars : interior and composition



Georgia Tech (Caltech Media Assets)



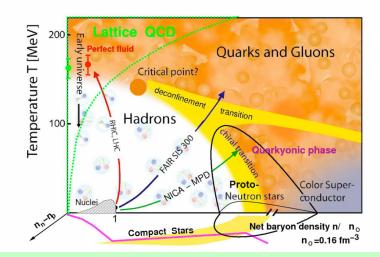
Lopes, Farias, Dexheimer, Bandyopadhyay, Ramos; Phys.Rev.D 106 (2022) 12, L121301

Motivation ○0●00

QCD Phase Diagram

Model 00000000 Thermodynamics and EoS

Summary 000

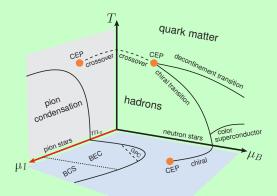


Motivation ○0●00

Model 00000000 Thermodynamics and EoS

Summary 000

QCD Phase Diagram



QCD Phase Diagram with μ_I

Motivation ○00●0 Model 00000000 Thermodynamics and EoS

Summary 000

The sign problem

- The partition function calculation in Lattice QCD produces a fermion functional determinant : DetM = Det (𝒴 + m + μγ₀)
- Considering a complex value of μ if one takes the determinant of both sides of the identity

 $\gamma_5 \left(\not\!\!D + m + \mu \gamma_0 \right) \gamma_5 = \left(\not\!\!D + m - \mu^* \gamma_0 \right)^{\dagger}$ one obtains $\text{Det} \left(\not\!\!D + m + \mu \gamma_0 \right) = \left[\text{Det} \left(\not\!\!D + m - \mu^* \gamma_0 \right) \right]^*$

- Unless $\mu = 0, \mathcal{I}$; $\mathrm{Det}M$ is not real \rightarrow Sign problem.
- So, for real μ it is not possible to carry out the direct sampling on a finite density ensemble by Monte Carlo methods.

Motivation ○○○○●

Model 00000000

Thermodynamics and EoS 000000

Summary 000

No sign problem for finite isospin density

- So, we need real DetM (not necessarily positive if we are dealing with even number of flavors) which can correspond to the identity: M[†] = PMP⁻¹.
 E.g. for μ = 0 and P = γ₅, γ₅ (𝔅 + m) γ₅⁻¹ = (𝔅 + m)[†]
- $\bullet\,$ Now for 2 flavor QCD with finite isospin density, M has a block diagonal structure

$$M(\mu_I) = \begin{pmatrix} L(\mu_I) & 0\\ 0 & L(-\mu_I) \end{pmatrix}$$

 $L(\mu_I)$ being the Dirac operator for one flavor with μ_I .

Motivation ○000● Model 00000000 Thermodynamics and EoS

Summary 000

No sign problem for finite isospin density

In presence of finite Baryonic and Isospin chemical potentials, the quark chemical potentials can be expressed as :

$$\mu_u = \frac{\mu_B}{3} + \mu_I$$
$$\mu_d = \frac{\mu_B}{3} - \mu_I$$

When we have vanishing Baryonic chemical potential :

 $\mu_u = \mu_I$ $\mu_d = -\mu_I$

Motivation ○○○○●

Model 00000000

Thermodynamics and EoS

Summary 000

No sign problem for finite isospin density

$$M(\mu_I) = \begin{pmatrix} L(\mu_I) & 0\\ 0 & L(-\mu_I) \end{pmatrix}$$

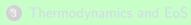
- $L(\mu_I)$ satisfies $L^{\dagger}(\mu_I) = \gamma_5 L(-\mu_I) \gamma_5$.
- Hence, the positivity condition is satisfied by setting

$$P = \begin{pmatrix} 0 & \gamma_5 \\ \gamma_5 & 0 \end{pmatrix}$$

- So we have $\operatorname{Det} M(\mu_I) = |\operatorname{Det} L|^2 \ge 0$.
- $\operatorname{Det} M$ is real for QCD at non-zero isospin density \to No sign problem.

Outline

Model 0000000 Thermodynamics and EoS



LSMq Lagrangian

Model ○●○○○○○○ Thermodynamics and EoS

Summary 000

$\mathcal{L} = \frac{1}{2} (\partial_{\mu}\sigma)^2 + \frac{1}{2} (\partial_{\mu}\vec{\pi})^2 + \frac{a^2}{2} (\sigma^2 + \vec{\pi}^2) - \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2)^2$ $+ i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - ig\bar{\psi}\gamma^5\vec{\tau}\cdot\vec{\pi}\psi - g\bar{\psi}\psi\sigma,$

where $\vec{\tau} = (\tau_1, \tau_2, \tau_3)$ are the Pauli matrices, $\psi_{L,R} = \begin{pmatrix} u \\ d \end{pmatrix}_{L,R}$ is a $SU(2)_{L,R}$ doublet, σ is a real scalar field and $\vec{\pi} = (\pi_1, \pi_2, \pi_3)$ is a triplet of real scalar fields. π_3 corresponds to the neutral pion (π_0) whereas the charged ones are represented by the combinations

$$\pi_{-} = \frac{1}{\sqrt{2}}(\pi_{1} + i\pi_{2}), \quad \pi_{+} = \frac{1}{\sqrt{2}}(\pi_{1} - i\pi_{2}).$$

The parameters a^2 , λ and g are real and positive definite.

Model ○●○○○○○○

Thermodynamics and EoS

Summary 000

LSMq Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} (\partial_{\mu} \vec{\pi})^2 + \frac{a^2}{2} (\sigma^2 + \vec{\pi}^2) - \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2)^2 + i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - i g \bar{\psi} \gamma^5 \vec{\tau} \cdot \vec{\pi} \psi - g \bar{\psi} \psi \sigma,$$

can be written in terms of charged and neutral pion degrees of freedom as

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} [(\partial_{\mu} \sigma)^{2} + (\partial_{\mu} \pi_{0})^{2}] + \partial_{\mu} \pi_{-} \partial^{\mu} \pi_{+} + \frac{a^{2}}{2} (\sigma^{2} + \pi_{0}^{2}) + a^{2} \pi_{-} \pi_{+} \\ &- \frac{\lambda}{4} (\sigma^{4} + 4\sigma^{2} \pi_{-} \pi_{+} + 2\sigma^{2} \pi_{0}^{2} + 4\pi_{-}^{2} \pi_{+}^{2} + 4\pi_{-} \pi_{+} \pi_{0}^{2} + \pi_{0}^{4}) \\ &+ i \bar{\psi} \partial \!\!\!/ \psi - g \bar{\psi} \psi \sigma - i g \bar{\psi} \gamma^{5} (\tau_{+} \pi_{+} + \tau_{-} \pi_{-} + \tau_{3} \pi_{0}) \psi, \end{aligned}$$

where we introduced the combination of Pauli matrices

$$\tau_{+} = \frac{1}{\sqrt{2}}(\tau_{1} + i\tau_{2}), \quad \tau_{-} = \frac{1}{\sqrt{2}}(\tau_{1} - i\tau_{2}).$$

LSMq Lagrangian

Model ○●○○○○○○ Thermodynamics and EoS

Summary 000

$\begin{aligned} \mathcal{L} &= \frac{1}{2} [(\partial_{\mu} \sigma)^2 + (\partial_{\mu} \pi_0)^2] + \partial_{\mu} \pi_- \partial^{\mu} \pi_+ + \frac{a^2}{2} (\sigma^2 + \pi_0^2) + a^2 \pi_- \pi_+ \\ &- \frac{\lambda}{4} (\sigma^4 + 4\sigma^2 \pi_- \pi_+ + 2\sigma^2 \pi_0^2 + 4\pi_-^2 \pi_+^2 + 4\pi_- \pi_+ \pi_0^2 + \pi_0^4) \\ &+ i \bar{\psi} \partial \!\!\!/ \psi - g \bar{\psi} \psi \sigma - i g \bar{\psi} \gamma^5 (\tau_+ \pi_+ + \tau_- \pi_- + \tau_3 \pi_0) \psi, \end{aligned}$

The Lagrangian possesses the following symmetries:

- A $SU(N_c)$ global color symmetry,
- A $SU(2)_L \times SU(2)_R$ chiral symmetry,
- A $U(1)_B$ symmetry. The sub-index of the latter emphasizes that the conserved charge is the baryon number B.

Model ○○●○○○○○ Thermodynamics and EoS

Summary 000

LSMq + finite isospin

- A conserved isospin charge multiplied by the isospin chemical potential $\rightarrow \bar{\psi}\mu_I \tau_3 \gamma_0 \psi$.
- $\ensuremath{\mathfrak{O}}$ For the charged pions \rightarrow ordinary derivative becomes a covariant derivative

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} + i\mu_I \delta^0_{\mu}, \quad \partial^{\mu} \to D^{\mu} = \partial^{\mu} - i\mu_I \delta^{\mu}_0,$$

• To include a finite vacuum pion mass, m_0 , we add an explicit symmetry breaking term $\rightarrow h(\sigma + v)$. v is the non-vanishing vacuum expectation value of σ (SCSB).

Model ○0●00000 Thermodynamics and EoS

Summary 000

LSMq + finite isospin

before

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} [(\partial_{\mu} \sigma)^2 + (\partial_{\mu} \pi_0)^2] + \partial_{\mu} \pi_- \partial^{\mu} \pi_+ + \frac{a^2}{2} (\sigma^2 + \pi_0^2) + a^2 \pi_- \pi_+ \\ &- \frac{\lambda}{4} (\sigma^4 + 4\sigma^2 \pi_- \pi_+ + 2\sigma^2 \pi_0^2 + 4\pi_-^2 \pi_+^2 + 4\pi_- \pi_+ \pi_0^2 + \pi_0^4) \\ &+ i \bar{\psi} \partial \!\!\!/ \psi - g \bar{\psi} \psi \sigma - i g \bar{\psi} \gamma^5 (\tau_+ \pi_+ + \tau_- \pi_- + \tau_3 \pi_0) \psi, \end{aligned}$$

after

$$\begin{aligned} \mathcal{L}' &= \frac{1}{2} [(\partial_{\mu} \sigma)^{2} + (\partial_{\mu} \pi_{0})^{2}] + D_{\mu} \pi_{-} D^{\mu} \pi_{+} + \frac{a^{2}}{2} (\sigma^{2} + \pi_{0}^{2}) + a^{2} \pi_{-} \pi_{+} \\ &- \frac{\lambda}{4} (\sigma^{4} + 4\sigma^{2} \pi_{-} \pi_{+} + 2\sigma^{2} \pi_{0}^{2} + 4\pi_{-}^{2} \pi_{+}^{2} + 4\pi_{-} \pi_{+} \pi_{0}^{2} + \pi_{0}^{4}) + h(\sigma + v) \\ &+ i \bar{\psi} \partial \!\!\!/ \psi - g \bar{\psi} \psi \sigma + \bar{\psi} \mu_{I} \tau_{3} \gamma_{0} \psi - i g \bar{\psi} \gamma^{5} (\tau_{+} \pi_{+} + \tau_{-} \pi_{-} + \tau_{3} \pi_{0}) \psi. \end{aligned}$$

Model ○0●00000 Thermodynamics and EoS

Summary 000

$\mathsf{LSMq} + \mathsf{finite} \text{ isospin}$

- Symmetry structures : $U(1)_B \times SU(2)_L \times SU(2)_R \rightarrow U(1)_B \times U(1)_{I_3}.$
- Ansatz for further simplifications in the pseudoscalar channels

$$egin{aligned} &\langle ar{\psi} i \gamma_5 au_3 \psi
angle = 0, \ &\langle ar{u} i \gamma_5 d
angle = \langle ar{d} i \gamma_5 u
angle^*
eq 0. \end{aligned}$$

- Breaks the residual $U(1)_{I_3}$ symmetry \rightarrow BEC.
- The charged pion fields can be referred from their condensates

$$\pi_+ \to \pi_+ + \frac{\Delta}{\sqrt{2}} e^{i\theta}, \quad \pi_- \to \pi_- + \frac{\Delta}{\sqrt{2}} e^{-i\theta}$$

• θ indicates the direction of the $U(1)_{I_3}$ symmetry breaking. We take $\theta = \pi$ for definitiveness.

Model ○○○●○○○○

Thermodynamics and EoS

Summary 000

One loop effective potential

In the condensed phase the tree-level potential can be written as

$$V_{\text{tree}} = -\frac{a^2}{2} \left(v^2 + \Delta^2 \right) + \frac{\lambda}{4} \left(v^2 + \Delta^2 \right)^2 - \frac{1}{2} \mu_I^2 \Delta^2 - hv.$$

The fermion contribution to the one-loop effective potential becomes

$$\sum_{f=u,d} V_f^1 = iV^{-1}\ln(\mathcal{Z}_f^1) = iV^{-1}\ln\left(\det\left(S_{\rm mf}^{-1}\right)\right)$$
$$= -2N_c \int \frac{d^3k}{(2\pi)^3} \left[E_{\Delta}^u + E_{\Delta}^d\right],$$

with

$$E_{\Delta}^{u[d]} = \left\{ \left(\sqrt{k^2 + m_f^2} + [-]\mu_I \right)^2 + g^2 \Delta^2 \right\}^{1/2},$$

Model ○○○●○○○○

Thermodynamics and EoS

Summary 000

One loop effective potential

- V_f^1 is ultraviolet divergent which depends on μ_I .
- To identify the divergent terms, we expand the fermion energies in powers of $\mu_I^2/[g^2(v^2+\Delta^2)]$

$$\sum_{f=u,d} V_f^1 = -2N_c \int \frac{d^3k}{(2\pi)^3} \Big(2\sqrt{k^2 + m_f^2 + g^2 \Delta^2} + \frac{\mu_I^2 g^2 \Delta^2}{(k^2 + m_f^2 + g^2 \Delta^2)^{3/2}} \Big)$$

 \bullet Using dimensional regularization in the $\overline{\text{MS}}$ scheme,

$$\sum_{f=u,d} V_f^1 = 2N_c \frac{g^4 \left(v^2 + \Delta^2\right)^2}{(4\pi)^2} \left[\frac{1}{\epsilon} + \frac{3}{2} + \ln\left(\frac{\Lambda^2/g^2}{v^2 + \Delta^2}\right)\right] - 2N_c \frac{g^2 \mu_I^2 \Delta^2}{(4\pi)^2} \left[\frac{1}{\epsilon} + \ln\left(\frac{\Lambda^2/g^2}{v^2 + \Delta^2}\right)\right],$$

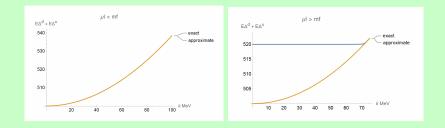
where Λ is the dimensional regularization ultraviolet scale and the limit $\epsilon \to 0$ is to be understood.

Model ○○○○●○○○

Thermodynamics and EoS

Summary 000

Two distinct regimes : $\mu_I < \overline{m_f}$ and $\mu_I > m_f$



We focus on the $\mu_I < m_f$ regime.

Model ○○○○○●○○ Thermodynamics and EoS

Summary 000

Vacuum Stability

- Term proportional to $\mu_I^2\Delta^2\to$ same structure present in the tree-level potential and divergent term.
- Introduce counter-terms that respect the structure of the tree-level potential and determine them by accounting for the stability conditions

$$\frac{\partial V_{\text{tree}}}{\partial v} = \left[\lambda v^3 - (a^2 - \lambda \Delta^2) v - h \right] \Big|_{v_0, \Delta_0} = 0$$
$$\frac{\partial V_{\text{tree}}}{\partial \Delta} = \left[\lambda \Delta^2 - (\mu_I^2 - \lambda v^2 + a^2) \right] \Big|_{v_0, \Delta_0} = 0.$$

- $\mu_I^2 > \lambda v^2 a^2 = m_0^2 \rightarrow$ Condensed phase.
- Simultaneous solutions (classical solution)

$$v_0 = \frac{h}{\mu_I^2}, \quad \Delta_0 = \sqrt{\frac{\mu_I^2}{\lambda} - \frac{h^2}{\mu_I^4} + \frac{a^2}{\lambda}},$$

Model ○○○○○○●○

Thermodynamics and EoS

Summary 000

One loop effective potential with counterterms

$$V_{\text{eff}} = V_{\text{tree}} + \sum_{f=u,d} V_f^1 - \frac{\delta\lambda}{4} (v^2 + \Delta^2)^2 + \frac{\delta a}{2} (v^2 + \Delta^2) + \frac{\delta}{2} \Delta^2 \mu_I^2$$

• The counter-terms $\delta\lambda$ and δ are determined from the gap equations

$$\frac{\partial V_{\text{eff}}}{\partial v}\Big|_{v_0,\,\Delta_0} = 0, \quad \frac{\partial V_{\text{eff}}}{\partial \Delta}\Big|_{v_0,\,\Delta_0} = 0.$$

- These conditions suffice to absorb the infinities.
- The counter-term δa is determined by requiring that the slope of $V_{\rm eff}$ vanishes at $\mu_I = m_0$,

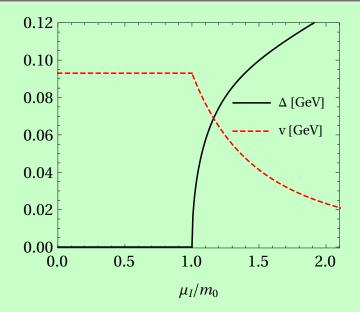
$$\left. \frac{\partial V_{\text{eff}}}{\partial \mu_I} \right|_{\mu_I = m_0} = 0,$$

or in other words, that the transition from the non-condensed to the condensed phase be smooth.

Model ○○○○○○○● Thermodynamics and EoS

Summary 000

Condensates



Outline

Model 00000000 Thermodynamics and EoS

Summary 000

Motivation

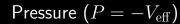
2 Model

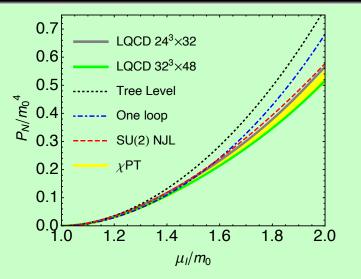
3 Thermodynamics and EoS

Model

Thermodynamics and EoS

Summary 000





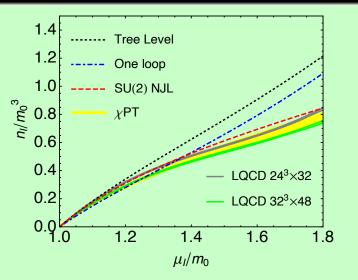
NJL : Avancini, Bandyopadhyay, Duarte, Farias; Phys. Rev. D. 100, 116002 (2019) $\chi \rm PT$: Adhikari, Andersen, Kneschke; Eur. Phys. J. C 79, 874 (2019) LQCD : Brandt, Cuteri, Endrödi; Pos LATTICE2022, 144 (2023)

Model 00000000

Thermodynamics and EoS

Summary 000

Isospin density $(n_I = dP/d\mu_I)$



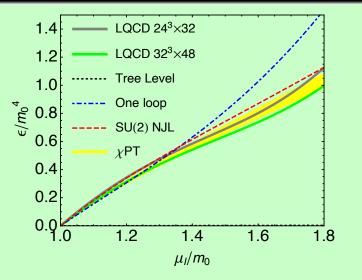
NJL : Avancini, Bandyopadhyay, Duarte, Farias; Phys. Rev. D. 100, 116002 (2019) $\chi \rm PT$: Adhikari, Andersen, Kneschke; Eur. Phys. J. C 79, 874 (2019) LQCD : Brandt, Cuteri, Endrödi; Pos LATTICE2022, 144 (2023)

Model 00000000

Thermodynamics and EoS

Summary 000

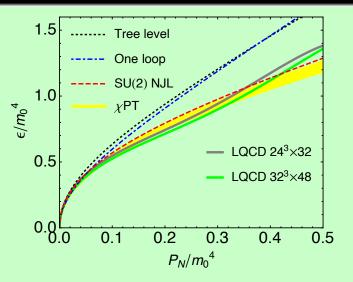
Energy density ($\epsilon = -P + n_I \mu_I$)



NJL : Avancini, Bandyopadhyay, Duarte, Farias; Phys. Rev. D. 100, 116002 (2019) $\chi \rm PT$: Adhikari, Andersen, Kneschke; Eur. Phys. J. C 79, 874 (2019) LQCD : Brandt, Cuteri, Endrödi; Pos LATTICE2022, 144 (2023)

Motivation 00000 EoS Model 00000000 Thermodynamics and EoS

Summary 000



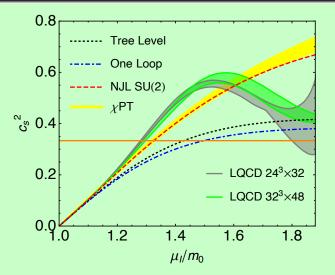
NJL : Avancini, Bandyopadhyay, Duarte, Farias; Phys. Rev. D. 100, 116002 (2019) $\chi \rm PT$: Adhikari, Andersen, Kneschke; Eur. Phys. J. C 79, 874 (2019) LQCD : Brandt, Cuteri, Endrödi; Pos LATTICE2022, 144 (2023)

Model 00000000

Thermodynamics and EoS

Summary 000

Speed of sound ($c_s^2=\partial P/\partial\epsilon$)



NJL : Avancini, Bandyopadhyay, Duarte, Farias; Phys. Rev. D. 100, 116002 (2019) $\chi \rm PT$: Adhikari, Andersen, Kneschke; Eur. Phys. J. C 79, 874 (2019) LQCD : Brandt, Cuteri, Endrödi; Pos LATTICE2022, 144 (2023)

Outline

Model 00000000 Thermodynamics and EoS

Summary ●○○

Motivation

2 Model

3 Thermodynamics and EoS

Model 00000000 Thermodynamics and EoS

Summary ○●0

To summarize

- LSMq, with 2 quark flavors, has been used to study the phase structure of isospin asymmetric matter at zero temperature.
- The meson degrees of freedom provide mean field on top of which we include quark fluctuations at one-loop order.
- Appropriate renormalization has been done to absorb UV divergences with the addition of counter-terms that respect the original structure of the theory.
- Two phases in the condensed phase: $\mu_I < m_f$ and $\mu_I > m_f$.
- Evolution of the chiral and isospin condensates as well as the pressure, energy and isospin densities and the sound velocity. Good agreement with LQCD for the studied phase, $\mu_I < m_f$.
- Phase with $\mu_I > m_f$ is work in progress.

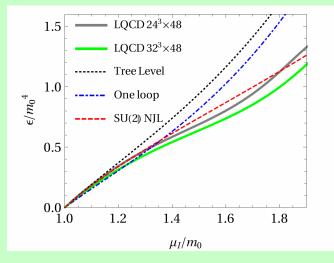
Model 00000000

Thermodynamics and EoS

Summary ○0●

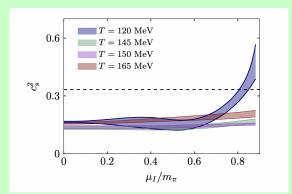
Thank you for your kind attention.

Energy density (
$$\epsilon = -P + n_I \mu_I$$
)



NJL : Avancini, Bandyopadhyay, Duarte, Farias; Phys. Rev. D. 100, 116002 (2019) χ PT : Adhikari, Andersen, Kneschke; Eur. Phys. J. C 79, 874 (2019) LQCD : Brandt, Cuteri, Endrödi; Pos LATTICE2022, 144 (2023)

Speed of sound at finite T (LQCD results)



LQCD : Brandt, Cuteri, Endrödi; Pos LATTICE2022, 144 (2023)