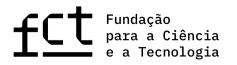
Neutron Star Radial Oscillations with Delta Baryons

Ishfaq Ahmad Rather


Centre for Astrophysics and Gravitation-CENTRA,

Instituto Superior Tecnico-IST, University of Lisbon, Portugal

Collaborators: Kauan D. Marquez, Grigoris Panotopoulos, and Ilídio Lopes

19th International Conference on QCD in Extreme Conditions (XQCD 2023) University of Coimbra

26 July 2023

Radial Equations

Results and Discussion

Contents

Introduction to NSs

- 2 Equation of State
- 3 Radial Equations
- A Results and Discussion

Radial Equations

Results and Discussion

Table of Contents

Introduction to NSs

- 2 Equation of State
- 3 Radial Equations
- 4 Results and Discussion

What is a Neutron star?

- For astronomers: dim, small stars, visible as radio-pulsars, X-ray and γ-ray sources, or the compact binary companion of some other big star.
- For nuclear physicists: The largest and most neutron rich nucleus an in the Universe (A \approx 1057, Z \approx 1056).
- For particle physicists: A strong neutrino (and sterile neutrinos, axions ?) source at birth (SN 1987a). Probably the only place where deconfined quark matter can exist
- For relativists: Almost a black hole (\approx 3 Schwarzschild radii).
- For plasma physicists. Plasma under the most extreme conditions in a pulsar magnetosphere.
- For everybody else: surely you can find your favorite physics in a neutron star (superconductivity, magneto-elasticity ...)


Equation of State

Radial Equations

Results and Discussion

Neutron stars

- Formed in: Type II, Ib or Ic SN (remnant of $M \approx 8-30 M_{\odot}$)
- Mass: $M \approx 2 M_{\odot}$ (or even more?)
- Radius: $R \approx 10-13 \text{ km}$
- Density: $\rho \approx 10^{14} - 10^{15} \, g/cm^3$
- Magnetic Field: $B \approx 10^{15} - 10^{18} G$

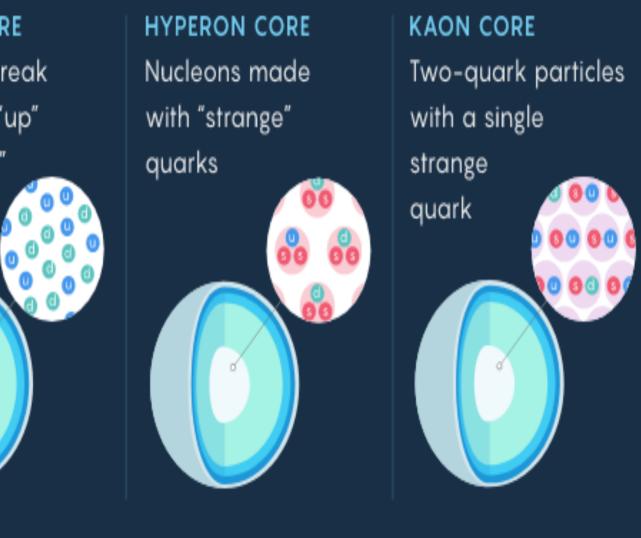
- NS has 5 major regions:
- The Atmosphere & The Envelope:shaping the emergent photon spectrum.
- The Crust:extending about 1-2 km, primarily contains nuclei.
- The Inner & Outer Cores: contains 99% of stars mass.

CARINKLE OF

NEUTRON STAR

I. A. Rather

Delta Baryons


Equation of State

Radial Equations

Results and Discussion

Exotic Matter

QUARK CORE Nucleons break apart into "up" and "down" quarks

Introduction to NSs 0000●	Equation of State	Radial Equations	Results and Discussion 000000000000000000000000000000000000

Several exotic degrees of freedom such as hyperons, kaons, and delta baryons
 (Δ) are present in the NS core.

Introduction to NSs 0000●	Equation of State	Radial Equations	Results and Discussion

- Several exotic degrees of freedom such as hyperons, kaons, and delta baryons
 (Δ) are present in the NS core.
- It was found that the Δ baryons could be present only at densities \approx 10 ρ_0 inside the NSs. N. K. Glendenning, Astrophys. J. 293, 470 (1985).

Introduction to NSs 0000●	Equation of State	Radial Equations	Results and Discussion
Several exotic	degrees of freedor	n such as hyperons k	ons and delta harvons

- Several exotic degrees of freedom such as hyperons, kaons, and delta baryons

 (Δ) are present in the NS core.
- It was found that the Δ baryons could be present only at densities \approx 10 ρ_0 inside the NSs. N. K. Glendenning, Astrophys. J. 293, 470 (1985).
- With proper couplings between △ baryons and nucleons, they might be present inside the NSs and that they could in fact make up a large fraction of the baryons in NS matter K. D. Marquez, et al., PRC 106, 055801 (2022), L. L. Lopes et al., PRD 107, 036011 (2023).

Introduction to NSs 0000●	Equation of State	Radial Equations	Results and Discussion
Several exotic description	egrees of freedom suc	ch as hyperons, kaons	, and delta baryons

- (Δ) are present in the NS core.
- It was found that the Δ baryons could be present only at densities \approx 10 ρ_0 inside the NSs. N. K. Glendenning, Astrophys. J. 293, 470 (1985).
- With proper couplings between △ baryons and nucleons, they might be present inside the NSs and that they could in fact make up a large fraction of the baryons in NS matter K. D. Marquez, et al., PRC 106, 055801 (2022), L. L. Lopes et al., PRD 107, 036011 (2023).
- Δ baryons can exist inside NSs at almost the same density range as the hyperons (pprox 2-3 ho_0)

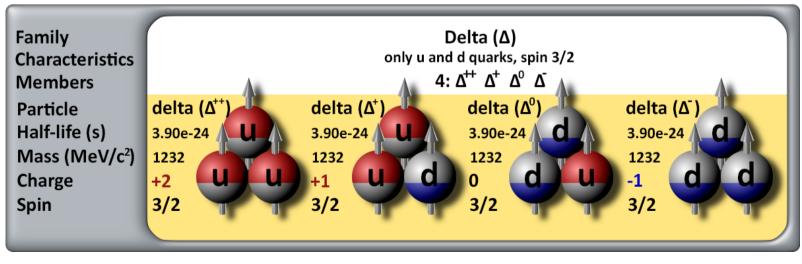
 $m_N < m_\Delta(1232 MeV) < m_{\Xi}.$

Introduction to NSs 0000●	Equation of State	Radial Equations	Results and Discussion
Several evotic d	earees of freedom suc	has hyperons kaons	and delta harvons

- Several exotic degrees of freedom such as hyperons, kaons, and delta baryons

 (Δ) are present in the NS core.
- It was found that the Δ baryons could be present only at densities \approx 10 ρ_0 inside the NSs. N. K. Glendenning, Astrophys. J. 293, 470 (1985).
- With proper couplings between △ baryons and nucleons, they might be present inside the NSs and that they could in fact make up a large fraction of the baryons in NS matter K. D. Marquez, et al., PRC 106, 055801 (2022), L. L. Lopes et al., PRD 107, 036011 (2023).
- Δ baryons can exist inside NSs at almost the same density range as the hyperons (\approx 2-3 ho_0)

 $m_N < m_\Delta(1232 MeV) < m_{\Xi}.$


 In this work, The spin-3/2 baryons are described by the Rarita Schwinger Lagrangian density.

Introduction to NSs 0000●	Equation of State	Radial Equations	Results and Discussion
Soveral evet	ic degrees of freeder	n such as hyporons k	and dolta harvons

- Several exotic degrees of freedom such as hyperons, kaons, and delta baryons
 (Δ) are present in the NS core.
- It was found that the Δ baryons could be present only at densities \approx 10 ρ_0 inside the NSs. N. K. Glendenning, Astrophys. J. 293, 470 (1985).
- With proper couplings between △ baryons and nucleons, they might be present inside the NSs and that they could in fact make up a large fraction of the baryons in NS matter K. D. Marquez, et al., PRC 106, 055801 (2022), L. L. Lopes et al., PRD 107, 036011 (2023).
- Δ baryons can exist inside NSs at almost the same density range as the hyperons (\approx 2-3 ho_0)

 $m_N < m_\Delta$ (1232MeV) $< m_{\Xi}$.

 In this work, The spin-3/2 baryons are described by the Rarita Schwinger Lagrangian density.

Radial Equations

Results and Discussion

Table of Contents

1) Introduction to NSs

2 Equation of State

3 Radial Equations

4 Results and Discussion

• The hadronic matter composing the neutron stars is described within a relativistic mean-field approach with density-dependent couplings (DD-RMF). Introduction to NSs

Equation of State

Radial Equations

- The hadronic matter composing the neutron stars is described within a relativistic mean-field approach with density-dependent couplings (DD-RMF).
- This type of model is shown to be very consistent in the description of nuclear matter experimental properties and also holds when astrophysical constraints are imposed.

Equation of State Introduction to NSs റ്റററ

0000

S

- The hadronic matter composing the neutron stars is described within a relativistic mean-field approach with density-dependent couplings (DD-RMF).
- This type of model is shown to be very consistent in the description of nuclear matter experimental properties and also holds when astrophysical constraints are imposed.

$$\mathcal{L}_{RMF} = \sum_{b \in H} \bar{\psi}_{b} \Big[i \gamma^{\mu} \partial_{\mu} - \gamma^{0} (g_{\omega b} \omega_{0} + g_{\phi b} \phi_{0} + g_{\rho b} I_{3b} \rho_{03}) - (m_{b} - g_{\sigma b} \sigma_{0}) \Big] \psi_{b}$$

$$- \frac{i}{2} \sum_{b \in \Delta} \bar{\psi}_{b\mu} \Big[\varepsilon^{\mu\nu\rho\lambda} \gamma_{5} \gamma_{\nu} \partial_{\rho} - \gamma^{0} (g_{\omega b} \omega_{0} + g_{\rho b} I_{3b} \rho_{03}) - (m_{b} - g_{\sigma b} \sigma_{0}) \varsigma^{\mu\lambda} \Big] \psi_{b\nu}$$
pin-3/2
$$+ \sum_{\lambda} \bar{\psi}_{\lambda} (i \gamma^{\mu} \partial_{\mu} - m_{\lambda}) \psi_{\lambda} - \frac{1}{2} m_{\sigma}^{2} \sigma_{0}^{2} + \frac{1}{2} m_{\omega}^{2} \omega_{0}^{2} + \frac{1}{2} m_{\phi}^{2} \phi_{0}^{2} + \frac{1}{2} m_{\rho}^{2} \rho_{03}^{2}$$
(1)

I. A. Rather et al., Phys. Rev. D 107, 123022 (2023).

Pure mesonic contribution

Results and Discussion

The density-dependent coupling constants are represented as:

$$g_{\rho b}(n_B) = g_{ib}(n_0) \exp\left[-a_{\rho}(\eta - 1)\right],$$

For rho meson

$$f_i(x) = a_i \frac{1 + b_i (x + d_i)^2}{1 + c_i (x + d_i)^2}, i = \sigma, \omega.\phi$$

 $g_i(n_B) = g_i(n_O)f_i(x)$

$$\begin{split} \varepsilon_{B} &= \sum_{b} \frac{\gamma_{b}}{2\pi^{2}} \int_{0}^{k_{Fb}} dkk^{2} \sqrt{k^{2} + m_{b}^{*2}} + \sum_{\lambda} \frac{1}{\pi^{2}} \int_{0}^{k_{F\lambda}} dkk^{2} \sqrt{k^{2} + m_{\lambda}^{2}} \\ &+ \frac{m_{\sigma}^{2}}{2} \sigma_{0}^{2} + \frac{m_{\omega}^{2}}{2} \omega_{0}^{2} + \frac{m_{\phi}^{2}}{2} \phi_{0}^{2} + \frac{m_{\rho}^{2}}{2} \rho_{03}^{2}. \end{split}$$
$$P &= \sum_{i} \mu_{i} n_{i} - \epsilon + n_{B} \Sigma^{r}, \end{split}$$

Rearrangement term

$$\Sigma^{r} = \sum_{b} \left[\frac{\partial g_{\omega b}}{\partial n_{b}} \omega_{0} n_{b} + \frac{\partial g_{\rho b}}{\partial n_{b}} \rho_{03} I_{3b} n_{b} + \frac{\partial g_{\phi b}}{\partial n_{b}} \phi_{0} n_{b} - \frac{\partial g_{\sigma b}}{\partial n_{b}} \sigma_{0} n_{b}^{s} \right]$$

S. Typel et al., Nucl. Phys. A 656, 331 (1999).

I. A. Rather

Delta Baryons

DD-RMF Parameter set

Table: DDME2 parameters (top) and its predictions to the nuclear matter at saturation density (bottom) G. A. Lalazissis, *et al.*, Phys. Rev. C 71, 024312 (2005).

i	$m_i(MeV)$	a _i	b _i	c _i	d _i	g _{iN} (n _O)
σ	550.1238	1.3881	1.0943	1.7057	0.4421	10.5396
ω	783	1.3892	0.9240	1.4620	0.4775	13.0189
ho	763	0.5647	—	—	—	7.3672

Quantity	Constraints	This model
n _O (fm ⁻³)	0.148–0.170	0.152
-B/A (MeV)	15.8–16.5	16.4
K _O (MeV)	220–260	252
S ₀ (MeV)	31.2–35.0	32.3
L ₀ (MeV)	38–67	51

Table: Baryon-meson coupling constants χ_{ib} at α_v = 1.0.

b	$\chi_{\omega b}$	$\chi_{\sigma b}$	$I_{3b}\chi_{ hob}$	χ_{ϕ} b
Λ	2/3	0.611	0	0.471
Σ^- , Σ^0 , Σ^+	2/3	0.467	—1, O, 1	-0.471
<u></u> ≡−, ≡ ⁰	1/3	0.284	-1/2, 1/2	-0.314
Δ^- , Δ^0 , Δ^+ , Δ^{++}	1	1.053	-3/2, $-1/2$, $1/2$, $3/2$	0

The coupling constant at other values of α_{v} can be found here Phys. Rev. D 107,

I. A. Rather

Radial Equations ●○ Results and Discussion

Table of Contents

1) Introduction to NSs

2 Equation of State

3 Radial Equations

4 Results and Discussion

,

(3)

(5)

Radial displacement perturbation

$$\xi'(r) = -\frac{1}{r} \left(3\xi + \frac{\eta}{\gamma} \right) - \frac{P'(r)}{P + \mathcal{E}} \xi(r), \qquad (2)$$

$$\eta'(\mathbf{r}) = \xi \left[\omega^2 \mathbf{r} (1 + \mathcal{E}/\mathbf{P}) \mathbf{e}^{\lambda - \nu} - \frac{\mathbf{4P}'(\mathbf{r})}{\mathbf{P}} - \mathbf{8\pi} (\mathbf{P} + \mathcal{E}) \mathbf{r} \mathbf{e}^{\lambda} \right]$$

Radial pressure perturbation

$$+\frac{r(P'(r))^2}{P(P+\mathcal{E})}\right]+\eta\left[-\frac{\mathcal{E}P'(r)}{P(P+\mathcal{E})}-4\pi(P+\mathcal{E})re^{\lambda}\right]$$

D. Gondek et al., Astron. Astrophys. 325, 217 (1997).

Boundary conditions: at the center where r = 0 requires that

$$\eta = -\mathbf{3}\gamma\xi \tag{4}$$

Eq. (3) must be finite at the surface where r = R and hence

$$\eta = \xi \left[-4 + (1 - 2M/R)^{-1} \left(-\frac{M}{R} - \frac{\omega^2 R^3}{M} \right) \right]$$

The frequencies are computed by

$$\nu = \frac{\bar{\omega}}{2\pi} (kHz), \tag{6}$$

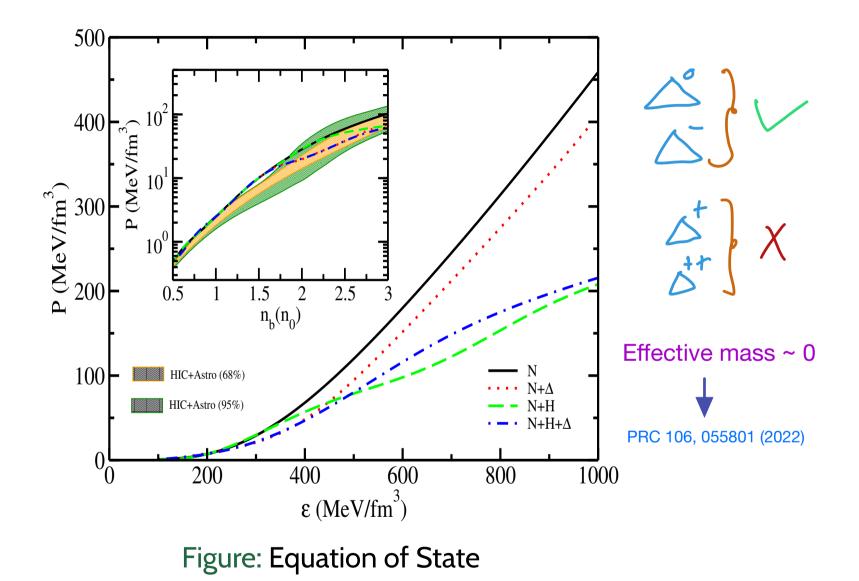
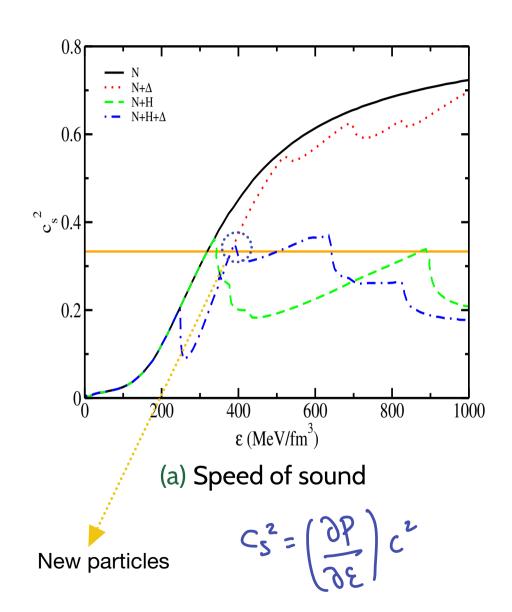
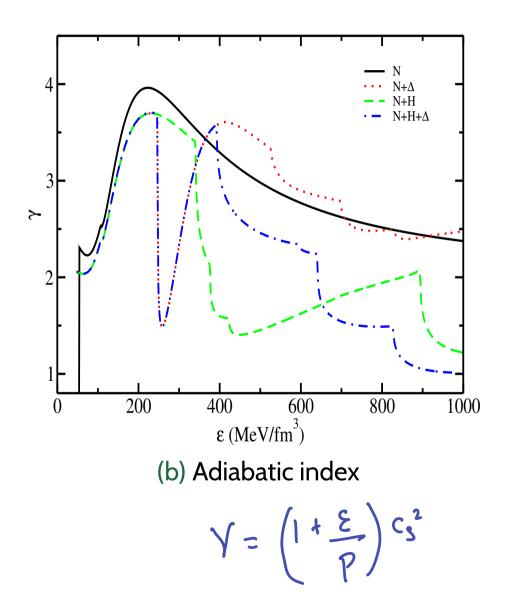
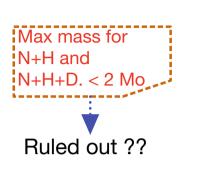

Radial Equations

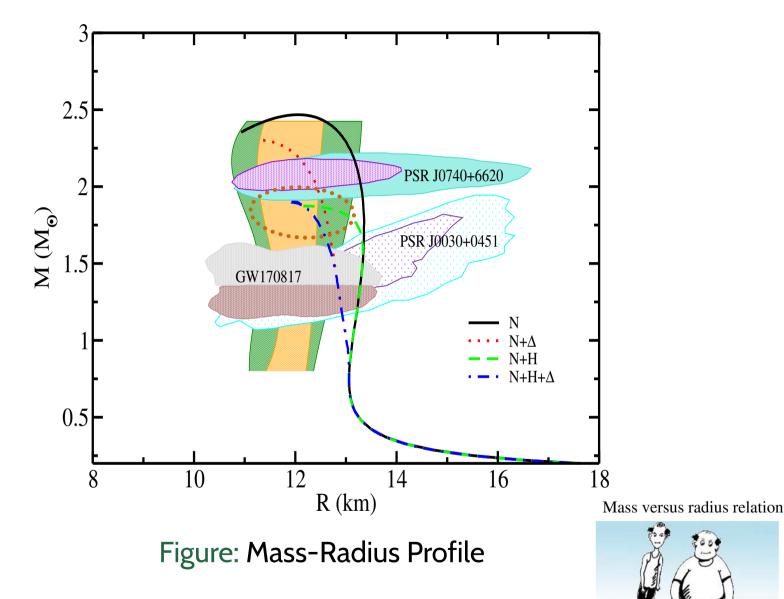
Table of Contents

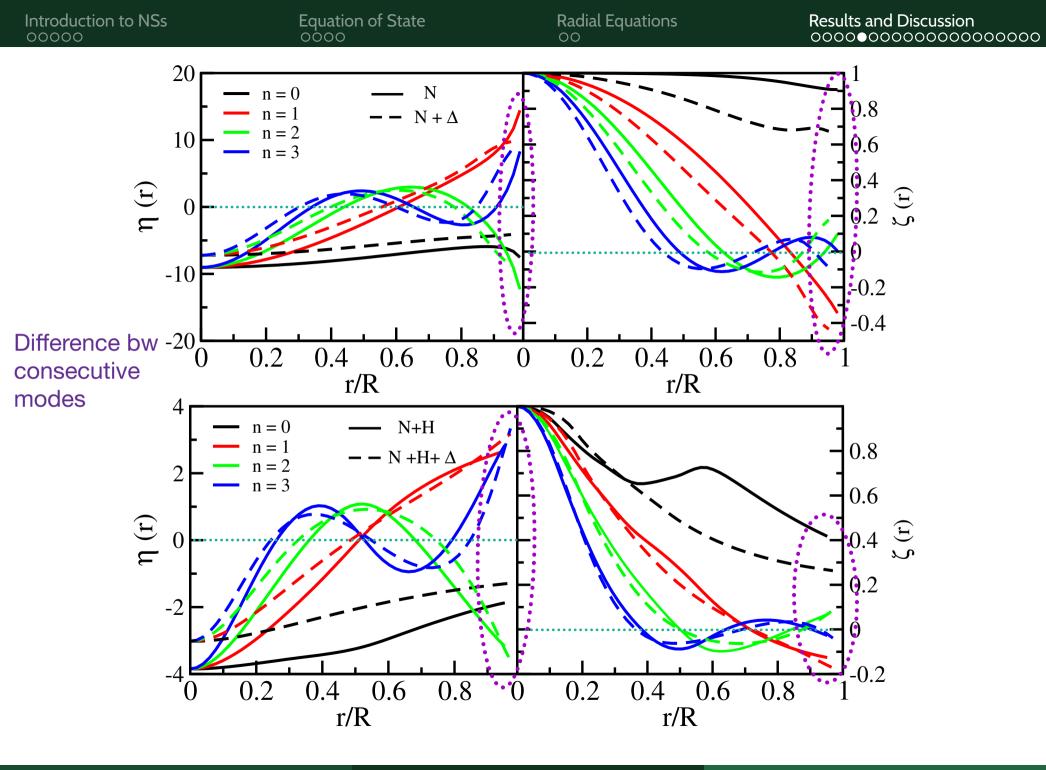

1) Introduction to NSs


- 2 Equation of State
- 3 Radial Equations
- A Results and Discussion

Equation of State




I. A. Rather



Ishfaq A. Rather et al., PRD, 107, 123022 (2023).

• For objects made of normal matter, radius

tends to increase with mass

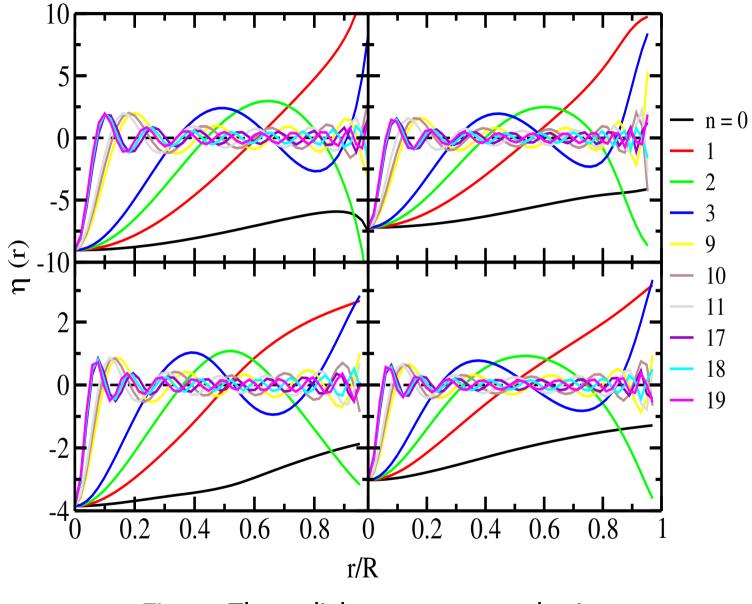


Figure: The radial pressure perturbation

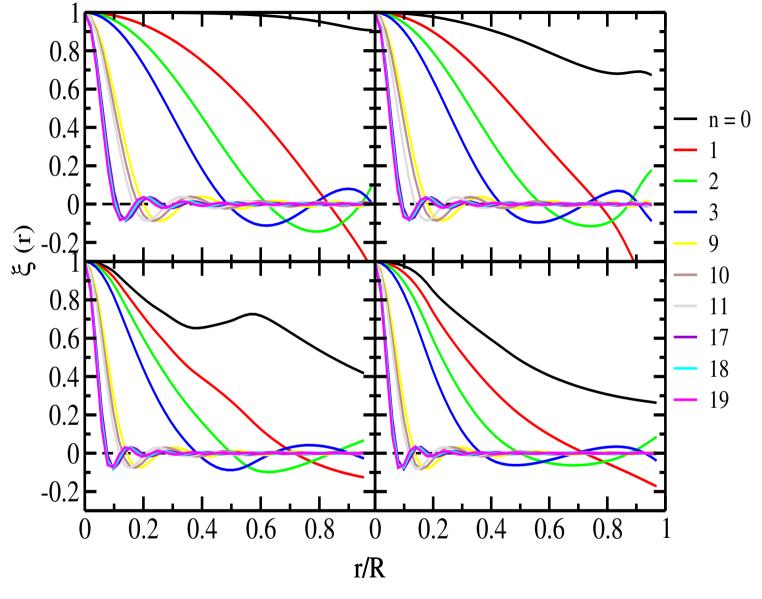


Figure: The radial displacement perturbation

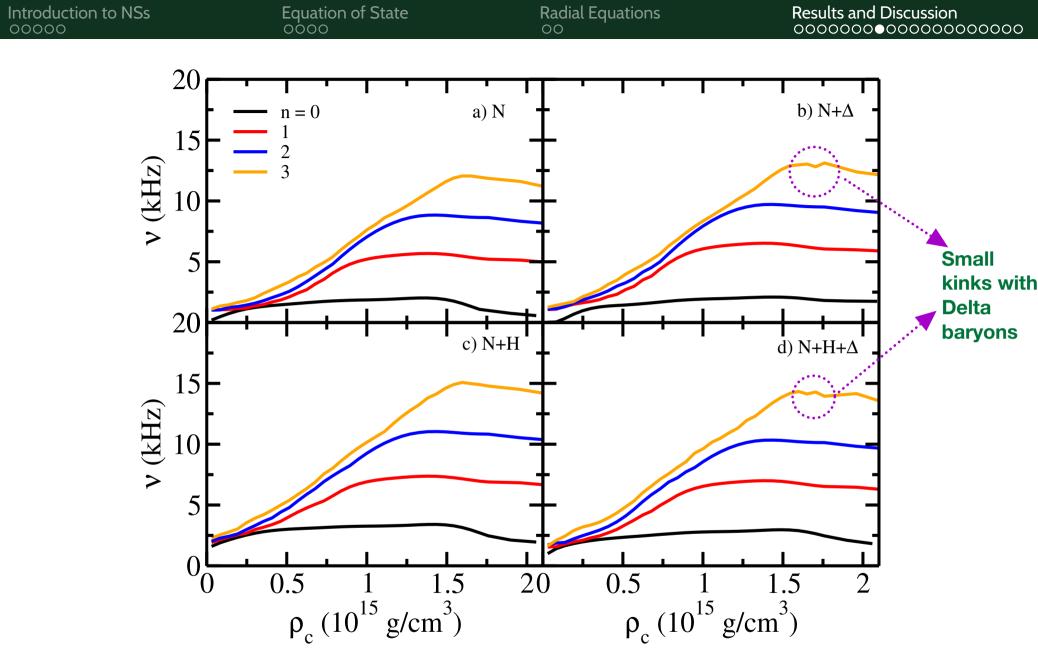


Figure: Frequency vs Density



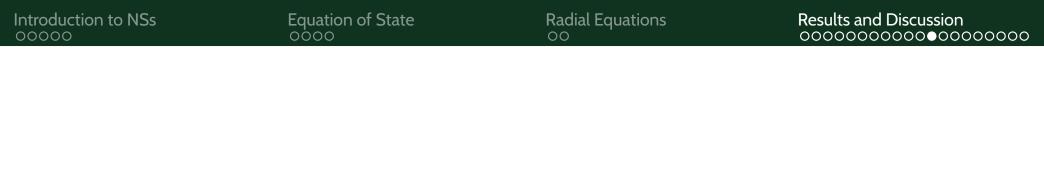

Figure: Frequency difference between consecutive modes

Table: 20 lowest order radial oscillation frequencies, ν in (kHz) for different EoSs considered calculated at the maximum mass of the corresponding star.

Nedec			EoS	
Nodes	Ν	N+Δ	N+H	Ν+Η+Δ
0	0.571	1.578	1.977	1.865
1	5.173	5.891	6.582	6.241
2	8.163	9.118	10.497	9.656
3	11.060	12.379	14.231	13.390
4	13.960	15.674	17.907	16.652
5	16.878	18.984	21.527	19.986
6	19.812	22.316	25.064	23.422
7	22.758	25.649	28.758	27.116
8	25.713	29.011	32.317	30.754
9	28.674	32.358	35.633	34.492
10	31.639	35.732	39.177	38.135
11	34.609	39.089	42.800	41.779
12	37.580	42.457	46.347	45.505
13	40.556	45.822	50.016	49.174
14	43.535	49.189	53.464	52.622
15	46.518	52.556	57.117	56.275
16	49.500	55.933	60.527	59.685
17	52.483	59.308	64.180	63.380
18	55.469	62.688	67.796	67.054
19	58.457	66.061	71.603	70.618

Summary and Conclusion

- We studied the 20 lowest eigenfrequencies and corresponding oscillation functions of Δ-admixed nuclear (NΔ) and hyperonic matter (NHΔ) by solving the Sturm-Liouville boundary value problem and also verifying its validity.
- The spin-3/2 baryons (Δs) are described using the Rarita-Schwinger Lagrangian density.
- While the addition of △ baryons to nucleonic matter softens the EoS, it gets stiffer for the hyperonic matter.
- Due to the onset of the Δ⁻, we observe a significant decrease in the value of the adiabatic index γ followed by a rapid increase. This increases even more at intermediate densities than it does for the pure nucleonic case, a behavior not seen in the hyperonic case.

- We investigated the radial displacement perturbation profile $\xi(r)$ and pressure perturbation profile $\eta(r)$ with Δ -admixed matter and found that they oscillate with exactly *n* nodes for the *n*th mode for all cases.
- The lowest modes show a smooth drop in their profiles while the higher modes depict small oscillations which become large for higher modes.
- For ∆-admixed nucleonic matter, small kinks are present for n = 0 mode. For hyperonic matter, the kink at the same node is found to be large and present at a small radius.
- These kinks in $\xi(r)$ correspond to the emergence of new exotic particles which provides a discontinuity in the adiabatic index γ .

Radial Equations

Results and Discussion

HESS J1731-347 EoS

• According to a recent analysis of the supernova remnant HESS J1731-347, the central compact object (CCO) mass and radius are of M= $0.77^{+0.20}_{-0.17} M_{\odot}$ and $R = 10.4^{+0.86}_{-0.78}$ km, respectively. V.Doroshenko *et al.*, 2022, Nature

Astronomy, 6, 1444.

HESS J1731-347 EoS

• According to a recent analysis of the supernova remnant HESS J1731-347, the central compact object (CCO) mass and radius are of $M = 0.77^{+0.20}_{-0.17} M_{\odot}$ and $R = 10.4^{+0.86}_{-0.78}$ km, respectively. V.Doroshenko *et al.*, 2022, Nature

Astronomy, 6, 1444.

This estimate of maximum mass, M = 0.77 M_☉, is intriguing. It is possible that the compact object in HESS J1731-347 is an exotic object rather than a neutron star J. J. Li *et al.*, 2023 (arXiv:2306.14185), V.Sagun *et al.*, 2023 (arXiv:2306.12326)

HESS J1731-347 EoS

• According to a recent analysis of the supernova remnant HESS J1731-347, the central compact object (CCO) mass and radius are of $M = 0.77^{+0.20}_{-0.17} M_{\odot}$ and $R = 10.4^{+0.86}_{-0.78}$ km, respectively. V.Doroshenko *et al.*, 2022, Nature

Astronomy, 6, 1444.

- This estimate of maximum mass, $M = 0.77 M_{\odot}$, is intriguing. It is possible that the compact object in HESS J1731-347 is an exotic object rather than a neutron star J. J. Li *et al.*, 2023 (arXiv:2306.14185), V.Sagun *et al.*, 2023 (arXiv:2306.12326)
- We investigate the peculiar nature of strange stars to understand the EoS governing the intriguing central compact object (CCO) within the supernova remnant HESS J1731-347,

HESS J1731-347 EoS

- According to a recent analysis of the supernova remnant HESS J1731-347, the central compact object (CCO) mass and radius are of $M = 0.77^{+0.20}_{-0.17} M_{\odot}$ and $R = 10.4^{+0.86}_{-0.78}$ km, respectively. V.Doroshenko *et al.*, 2022, Nature
- Astronomy, 6, 1444
- This estimate of maximum mass, $M = 0.77 M_{\odot}$, is intriguing. It is possible that the compact object in HESS J1731-347 is an exotic object rather than a neutron star J. J. Li *et al.*, 2023 (arXiv:2306.14185), V.Sagun *et al.*, 2023 (arXiv:2306.12326)
- We investigate the peculiar nature of strange stars to understand the EoS governing the intriguing central compact object (CCO) within the supernova remnant HESS J1731-347,
- Additionally, we compare the radial oscillations of two models (vBag and CFL) to determine the frequency of the HESS J1731-347 compact object at its maximum mass I. A. Rather, arXiv:2307.03703 (2023).

Equation of State 0000

Radial Equations $\cap \cap$

Results and Discussion

Vector coupling • For vBag model: $B = 55 \text{ MeV}/\text{fm}^3$, $K_{\nu} = 9 \text{ GeV}^{-2}$ (vBag1), Bag constant B = 55 MeV/fm³, K_{ν} = 6 GeV⁻² (vBag2)

Vector interaction enhanced Bag Model

T. Klahn et al. The Astrophys. J., 810, 134 (2015), W. Wei et al., As- trophys. J., 887, 151 (2019)

• For vBag model: $B = 55 \text{ MeV/fm}^3$, $K_{\nu} = 9 \text{ GeV}^{-2}$ (vBag1), $B = 55 \text{ MeV/fm}^3$, $K_{\nu} = 6 \text{ GeV}^{-2}$ (vBag2)

T. Klahn et al. The Astrophys. J., 810, 134 (2015), W. Wei et al., As- trophys. J., 887, 151 (2019)

• For CFL model: Superconducting gap parameter $B = 60 \text{ MeV/fm}^3$, $\Delta = 150 \text{ MeV}$, $m_s = 150 \text{ MeV}$ (CFL1), $B = 60 \text{ MeV/fm}^3$, $\Delta = 100 \text{ MeV}$, $m_s = 0 \text{ MeV}$ (CFL2)

C. V. Flores et al., Phys. Rev. C, 95, 025808 (2017)

EoS	M_{max}	R_{max}	$R_{1.4M_{\bigodot}}$	$R_{0.77M_{\odot}}$	$\Lambda_{1.4M_{\bigodot}}$
	(M_{\odot})	(km)	(km)	(km)	Ŭ
vBag1	2.15	11.76	12.15	10.43	158
vBag2	2.06	11.23	11.55	9.90	119
CFL1	2.62	13.50	12.47	10.47	484
CFL2	2.36	12.39	11.86	10.05	212

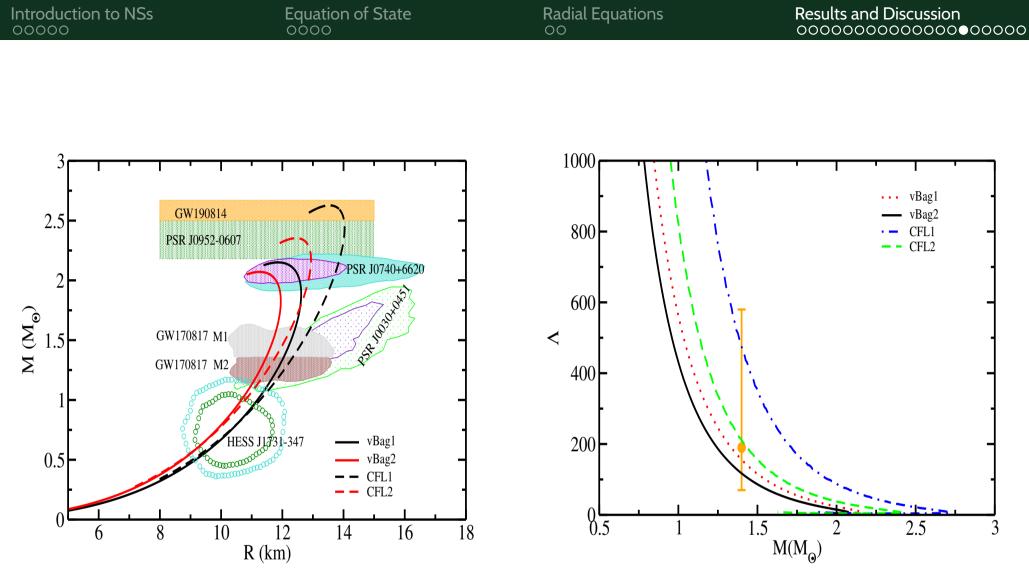


Figure: Mass-Radius and Tidal Deformability Profiles

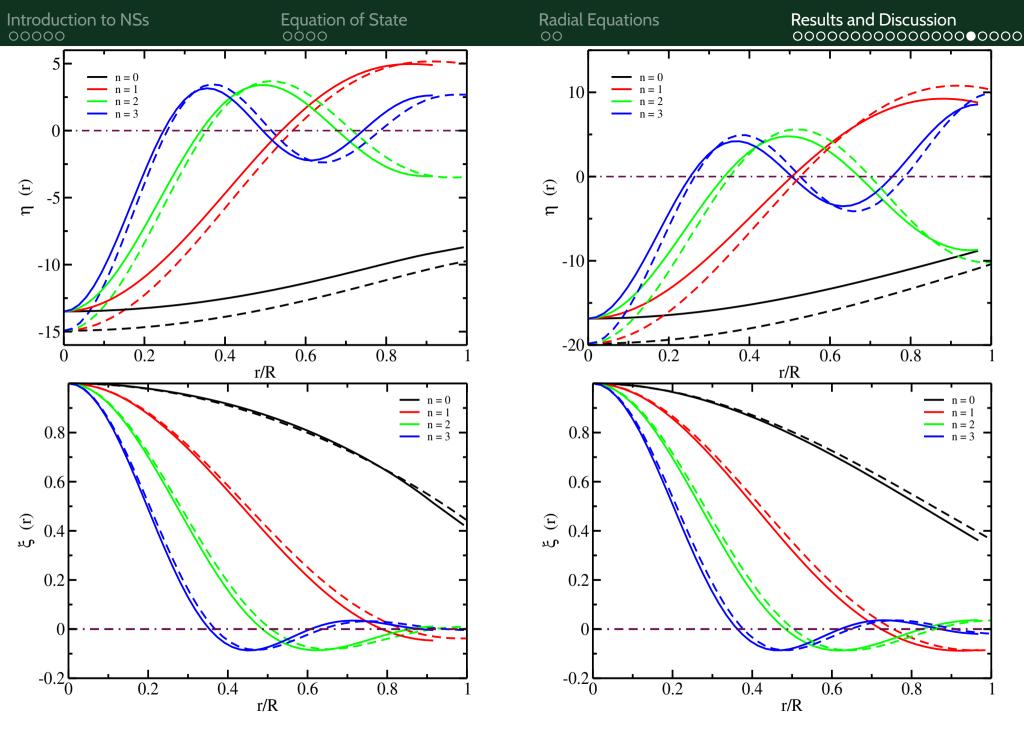
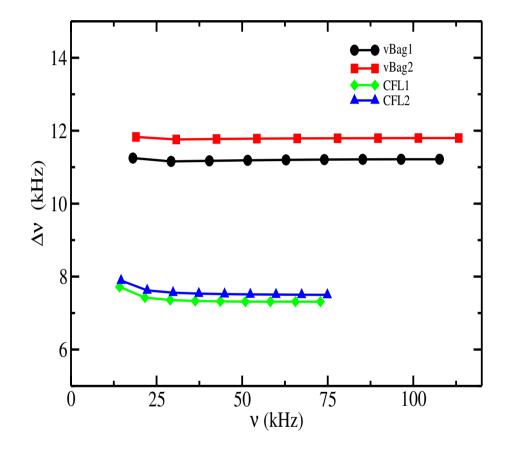



Figure: Radial profiles for vBag (left plots) and CFL (right panels) EoS.

I. A. Rather

Delta Baryons

Nodes		EoS		
	vBag1	vBag2	CFL1	CFL2
0	6.83	7.15	6.47	6.74
1	18.08	18.98	14.18	14.63
2	29.24	30.74	21.61	22.25
3	40.41	42.52	28.96	29.81
4	51.60	54.30	36.30	37.35
5	62.81	66.09	43.62	44.87
6	74.01	77.88	50.93	52.38
7	85.23	89.68	58.24	59.89
8	96.44	101.47	65.56	67.39
9	107.66	113.27	72.87	74.89

 The HESS J1731-347 offers crucial information in the density range of 1-2 times the nuclear saturation density, and hence will im- pose some strict constraints on strongly interacting matter.

- The HESS J1731-347 offers crucial information in the density range of 1-2 times the nuclear saturation density, and hence will im- pose some strict constraints on strongly interacting matter.
- By comparing the radial oscillations of the two models and determining the frequencies of the HESS J1731-347 at its maximum mass, the study goes beyond merely outlining the properties of the CCO.

- The HESS J1731-347 offers crucial information in the density range of 1-2 times the nuclear saturation density, and hence will im- pose some strict constraints on strongly interacting matter.
- By comparing the radial oscillations of the two models and determining the frequencies of the HESS J1731-347 at its maximum mass, the study goes beyond merely outlining the properties of the CCO.
- This offers a means to investigate their relationship to the observed mass-radius relationship of the HESS J1731-347 compact object and offers insightful infor- mation on the dynamical behavior of strange stars.

- The HESS J1731-347 offers crucial information in the density range of 1-2 times the nuclear saturation density, and hence will im- pose some strict constraints on strongly interacting matter.
- By comparing the radial oscillations of the two models and determining the frequencies of the HESS J1731-347 at its maximum mass, the study goes beyond merely outlining the properties of the CCO.
- This offers a means to investigate their relationship to the observed mass-radius relationship of the HESS J1731-347 compact object and offers insightful infor- mation on the dynamical behavior of strange stars.
- This high-lights the fundamental characteristics of strange stars and ex-plains their significance in the context of the current under-standing of the HESS J1731-347 compact object by delving into these intricate aspects.

Further Work

- To study the impact of including more exotic particles in the modelling of NSs using E-RMF and pQCD. These include kaons and deconfined QM (with and without mixtures of phases) under work....
- Effect of Dark matter on the radial properties of Hadron-Quark Phase Transition under work....
- To study the oscillations in presence of strong magnetic field.

For $\alpha_v = 0.5$

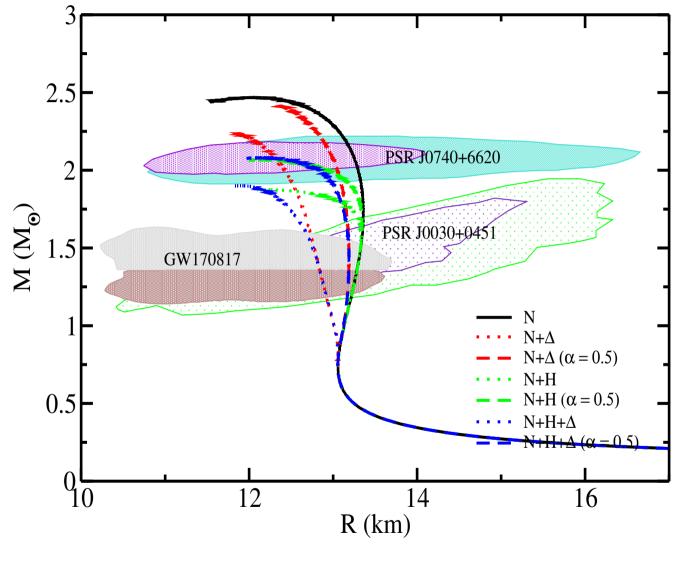
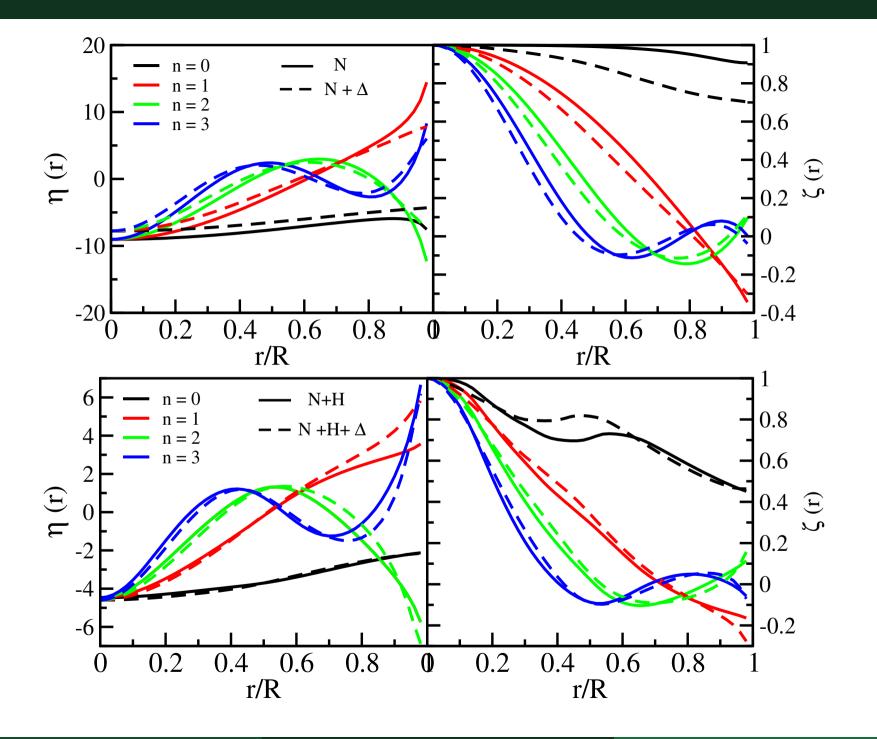



Figure: Mass-Radius Profile at α_v = 1.0 and 0.5

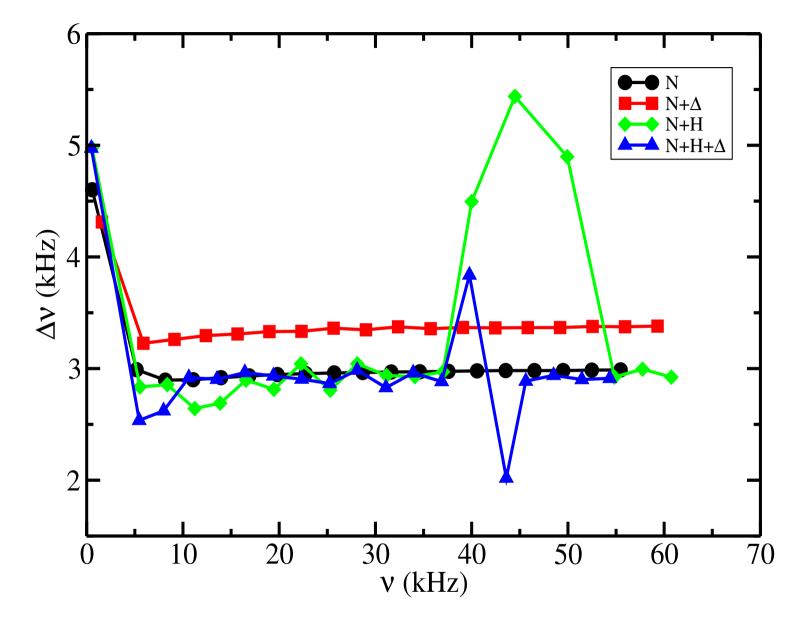


Figure: Frequency difference between consecutive modes

Nodes	EoS				
	Ν	N+Δ	N+H	N+H+A	
0	0.571	1.755	0.557	0.477	
1	5.173	5.943	5.532	5.451	
2	8.163	9.109	8.367	7.988	
3	11.060	12.462	11.224	10.609	
4	13.960	15.694	13.865	13.529	
5	16.878	18.833	16.555	16.432	
6	19.812	21.972	19.453	19.397	
7	22.758	25.119	22.266	22.331	
8	25.713	28.249	25.309	25.236	
9	28.674	31.374	28.115	28.102	
10	31.639	34.569	31.157	31.088	
11	34.609	40.861	34.095	33.917	
12	37.580	43.999	37.024	36.879	
13	40.556	47.197	39.995	39.763	
14	43.535	50.368	44.491	43.601	
15	46.518	53.547	49.929	45.620	
16	49.500	56.675	54.827	48.620	
17	52.483	59.826	57.750	51.446	
18	55.469	63.015	60.746	54.348	
19	58.457	66.168	63.670	57.261	

Table: 20 lowest order radial oscillation frequencies, ν in (kHz) for different EoSs at α_v = 0.5