

Contribution ID: 107

Type: Talk

Quarks in a finite volume and deconfinement as percolation of center-electric fluxes in QCD

Friday 28 July 2023 10:15 (25 minutes)

In order to understand the puzzle of the free energy of an individual quark in QCD, we explicitly construct ensembles with quark numbers $\boxtimes \neq 0 \mod 3$, corresponding to non-zero triality in a finite subvolume \boxtimes on the lattice. We first illustrate the basic idea in an effective Polyakov-loop theory for the heavy-dense limit of QCD, and then extend the construction to full Lattice QCD, where the electric center flux through the surface of \boxtimes has to be fixed at all times to account for Gauss's law. This requires introducing discrete Fourier transfroms over closed center-vortex sheets around the spatial volume \boxtimes between all subsequent time slices, and generalizes the construction of 't Hooff's electric fluxes in the purge gauge theory. Moreover, clusters of the same centerelectric fluxes are shown to undergo a percolation phase transition in the effective theory in which we can follow the corresponding Kertesz line through the Z3-crossover region, from the endpoint of the first-order line all the way to the massless limit. The best we can offer to study the same deconfinement phase transition in full QCD, at the moment, is the gauge-invariant definition of clusters of electric flux and their spanning probabilities which appear prohibitively expensive to measure, however.

Presenter: Prof. VON SMEKAL, Lorenz (Justus-Liebig University Giessen)

Session Classification: Plenary session