Recent results from NA61/SHINE on the onset of deconfinement studies and particle production

WARSAW UNIVERSITY OF TECHNOLOGY

NA6I/SHINE - UNIQUE MULTIPURPOSE FACILITY: Hadron production in hadron-nucleus and nucleus-nucleus collisions at high energies

Contraction of the second second second

CMS

SHUS

ACCELERATORS

BEAMLINE

NA61/SHINE detector setup

- General purpose hadron spectrometer
- Fixed target configuration \longrightarrow large acceptance of produced charged particle (up to 50%) with high tracking efficiency $p_{\mathcal{T}}\gtrsim 0$
- Precise centrality selection based on forward energy measured in Projectile Spectator Detector

Ream

Beam counters

and BPDs

New stage of SHINE!

Setup upgraded in 2022 by set of new detectors as well as new electronics which allow an increase of data rate up to 1.7 kHz

NA61/SHINE program

SHINE stands for SPS Heavy Ion and Neutrino Experiment

- Strong interactions
 - Onset of deconfinement & onset of fireball
 - Properties of QCD matter (EoS)
 - QCD critical point see Haradhan A. poster
- Neutrino physics
 - Hadron production cross sections for neutrino flux predictions
- Cosmic-rays
 - Hadron production cross sections for air-shower modelling as well as fragmentation cross-section

This talk focuses on the strong-interactions program

heavy ions at CERN

Onset of deconfinement & onset of fireball

• Onset of deconfinement

QGP formation by heating up the QCD matter with increasing collision energy

- temperature (plateau-like structures)
- increase of entropy (new degrees of freedom)
- strangeness to entropy (non-monotonic energy dependence)
- Onset of fireball QGP formation as a large equilibrated cluster of the QCD matter with increasing size of colliding nuclei

Requires two-dimensional scan in collision energy and system size

Onset of deconfinement: horn

p+p: EPJC 77 (2017) 10,671; Be+Be: EPJC 81 (2021) 1,73 Ar+Sc: M. Kuich, SQM'21; Pb+Pb: PRC 66 (2002) 054902

$${\sf F} = rac{(\sqrt{s_{NN}} - 2m_N)^{3/4}}{(\sqrt{s_{NN}})^{1/4}} pprox {\sf s}_{NN}^{1/4}$$

- Rapid change of K^+/π^+ in Pb+Pb collisions indicated onset of deconfinement in the SPS energy range
- No *horn* structure in Ar+Sc collisions → onset of fireball?
- Be+Be very close to p + p

None of the models reproduces K^+/π^+ ratio in the whole $\langle W \rangle$ range

PHSD: EPJA 56 (2020) 9, 223 SMASH: J.Phys.G 47 (2020) 6, 06510 p+p: EPJC 77 (2017) 10,671 Be+Be: EPJC 81 (2021) 1,73 Ar+Sc: M. Kuich, SQM'21 Pb+Pb: PRC 66 (2002) 054902

11110	() A // 1
MMP	(WUT
	(

KQCD 2023, Coimbra

Possible explanations - references

Onset of strings:

- PHSD: PRC, 78, 034919, 200; and NPA, 831, 215–242, 2009
- SMASH: PRC, 94, 5, 054905, 2016 and J. Phys. G, 47, 6, 065101, 202
- UrQMD: Prog. Part. Nucl. Phys.,41,255-369, 1998 and NPA, 936,1-5, 2015

Onset of deconfinement:

 SMES: Acta Phys.Polon. B30 (1999) 2705; PHSD: PRC, 78, 034919, 200; and NPA, 831, 215–242, 2009

Onset of QGP fireball:

- colour ropes: NPB, 245, 449-468, 1984.
- string fusion: NPB, 390, 542–558, 1993; PLB, 287, 154–158, 1992; EPJA, 51, 4, 44, 2015; Phys. Rep., 599, 1–50, 2015; and PRD, 103, 9, 094029, 2021.
- core fragmentation: PRL., vol. 98, p. 152301, 2007.
- string melting: PRC, 72, 064901, 2005.
- percolation: EPJC, 32, 547–553, 2004; and PLB, 640, 96–100, 2006.
- AdS/CFT duality: prc, 90, 1, 014901, 2014; prd, 90, 2, 025031, 2014; prc, 92, 1, 014011, 2015

Onset of deconfinement/fireball: kink

- Entropy to system's volume should increase when the ndf increases ($\sim ndf^{1/4}$)
- $\bullet~\mbox{Ar+Sc}$ systematically higher than other systems
- Ar+Sc close to Pb+Pb at higher energies
- Not conclusive with current data uncertainties

XQCD 2023, Coimbr

Onset of deconfinement: strangeness enhancement factors

The enhancement based on the new Ξ reference from NA61/SHINE

Eur.Phys.J.C 80 (2020) 9, 833; Nucl. Phys. B111 (1976) 461; J. Phys. G 32 (2006) 427-442

K* in p+p at 40-158 GeV/c

Eur. Phys. J. C (2022) 82:322

Ratio of K^* to K^-/K^+ sensitive to freeze-out and properties of hadron phase in A+A (p+p - reference):

$$rac{K^*}{K}|_{\textit{kinetic}}[A+A] = rac{K^*}{K}|_{\textit{chemical}}[p+p]$$

Ratio well fitted by GCE whereas CE fits only with ϕ excluded.

MMP (WUT)

XQCD 2023, Coimbra

July 26, 2023

Ξ in p+p

Many transport models fail to describe NA61/SHINE results on \equiv production in p+p

MMP (WUT)

XQCD 2023, Coimbra

٧

Ξ(**1530**)⁰ in p+p

Considerable differences between models. Data $(\equiv (1530)^0$ and $\equiv (1530)^0)$ is described by EPOS but not UrQMD.

Eur.Phys.J.C 81 (2021) 10, 91

XQCD 2023, Coimbra

HRG model in the CE formulation and p + p data

The statistical model fails when fixed γ_S . The fit with free γ_S finds 0.434±0.028 and reproduces the measurements well - a suppression of strange particle production in p+p collisions at CERN SPS energies

Charged/neutral kaon-ratio puzzle in Ar+Sc

Charged/neutral kaon-ratio - world data

 $\frac{\kappa^{\pm}-\kappa_{s}^{0}}{\kappa_{s}^{0}}$ ratio significantly higher than 1 – unexpected isospin symmetry violation?

Summary

- Unique 2D scan in system size and the collision energy is completed (keep in touch as analysis are still ongoing)
- Large difference between small (p+p and Be+Be) and large systems (Ar+Sc)
- Unexpected system-size dependence was revealed onset of (QGP) fireball?
 - $\blacktriangleright \mathbf{p+p} \approx \mathbf{Be+Be} \neq \mathbf{Ar+Sc} \leq \mathbf{Pb+Pb}$
 - further studies needed
- So-called horn structure does not appear in p+p, Be+Be, and Ar+Sc
- $\bullet\,$ Unique results on multi-strange baryons production in p+p interactions in SPS
- $\bullet\,$ None of the present theoretical models can explain results from NA61/SHINE
- Charged/neutral kaon-ratio puzzle indicates unexpected isospin symmetry violation.

Thank you

Supported by WUT ID-UB

NA61/SHINE detector setup@CERN

https://shine.web.cern.ch/

NA61/SHINE, JINST 9 (2014) P06005

NA stands for North Area of the CERN accelerator complex connected with SPS accelerator.

MMP (WUT)

XQCD 2023, Coimbr

July 26, 2023

19/18

NA61/SHINE: detector layout

NA61/SHINE, JINST 9 (2014) P06005

- beams: hadrons and ions with $p_{beam} = 13(8)A 400 \text{ GeV}/c$
- large acceptance detector which coverages full forward hemisphere from $p_T \approx 0$
- precise centrality selection based on forward energy

Unprecedented scan in system size and energy

- primary Ar, Xe and Pb
 - Ar beam in parallel, in SPS, with protons for LHC
 - NA61/SHINE requested Xe which went up to LHC
- secondary and fragmented beams (p, Be)

D. Manglunki

NA61/SHINE in 2022-2024: motivation

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark-gluon plasma impact J/Ψ production?

- first measurement of open charm at SPS energies
- large discrepency between models
 - $\longleftarrow \mathsf{expected} \mathsf{ data} \mathsf{ precision} \mathsf{ (magenta band)}$

Fluctuations - Intensive quantities

Independent of volume V in Ideal Boltzmann Grand Canonical Ensemble (IB-GCE)

$$\omega[N] = \frac{\kappa_2[N]}{\kappa_1[N]}, \quad S\sigma[N] = \frac{\kappa_3[N]}{\kappa_2[N]}, \quad \kappa\sigma^2[N] = \frac{\kappa_4[N]}{\kappa_2[N]}$$

where κ_i stands for i'th order cumulant of the distribution

There are two reference values:

- 1 for Poisson distribution (e.g. IB-GCE)
- O for no fluctuations
 Begun and MMP. arxiv:1705.01110[nuc

Experimentally we are only able to narrow centrality of the registered events and consider events from a given centrality class. Thus, intensive quantities contain also fluctuations of the system size e.g. Gazdzicki et al., arXiv:2102.11186

- For net-charge reference distribution is Skellam not Poisson \longrightarrow
- Centrality selection differs between experiments and for not the most central events it leads to different sets of events
- The simplest dependence is for $\omega[N] = \omega[N]_V + \langle n \rangle \frac{Var[V]}{\langle V \rangle}$, where *n* stands for particle density

Intensive for net-charge $\frac{\kappa_2[h^+ - h^-]}{(\kappa_1[h^+] + \kappa_1[h^-])}, \frac{\kappa_3[h^+ - h^-]}{\kappa_1[h^+ - h^-]}$

Data and analysis acceptance

Presented results refers to charged hadrons produced in strong and electromagnetic processes in:

- p+p inelastic interactions corrected for trigger bias, detector inefficiency and feed-down ω - NA61/SHINE, EPJC(2016)76:635; MMP, CPOD2016
- Be+Be 1% most central collisions uncorrected with estimate of systematic bias (e.q. feed-down, detector ineffciency, beam and target impurity)

 Servakov, WPCF2017

All considered results have statistical uncertainty obtained either via sub-sample or bootstrap methods.

Acceptance: forward rapidity with $p_T < 1.5 \text{ GeV}/c$:

• p+p acceptance - full acceptance of NA61/SHINE https://edms.cem.ch/document/1549298/1

• Be+Be acceptance: acceptance with additional rapidity cut: $0 < y_{\pi} < y_{beam}$.

https://edms.cern.ch/document/2487456/1

Accepted fraction of particles

$x[h^-] = rac{h^{accepted}}{h^{4\pi}} \longrightarrow$	$\sqrt{s_{NN}}$ (GeV)	6.1	7.6	8.7	11.9	16.8	
	$\times[h^{-}]$	0.27	0.3	0.3	0.4	0.5	

Note: non-uniform acceptance in $\boldsymbol{\phi}$

MMP (WUT)

Search for QCD critical point: baseline fluctuations

When measured fluctuations are grand-canonical?

- Fluctuations of particle number in acceptance ΔY_{accept} around midrapidity
- Scales: ΔY_{accept} analysis acceptance; ΔY_{total} full space; $\Delta Y_{kick,corr}$ diffusion and smearing
- ideal case: $\Delta Y_{total} >> \Delta Y_{accept} >> \Delta Y_{kick,corr}$
- NA61/SHINE as large acceptance experiment ideal for such studies
- $\bullet~p{+}p$ interactions as a reference for A+A studies \longrightarrow
- Note redefinition of intensive quantity to $\kappa_4/\kappa_2[h^-]$

A. Borucka, Lomonosov Conf. / 21

July 26, 2023

XQCD 2023, Coimbra

Search for QCD critical point: net-charge fluctuations

• $\langle N^2 \rangle \sim \xi^2 \quad \langle N^4 \rangle \sim \xi^7$

Special interest is devoted to net-charges as:

- no non-monotonic signal observed
- qualitative agreement with STAR data
- Note: different acceptance and centrality determination

Search for QCD critical point: femtoscopic correlations

 $Measurements \ suggest \ Gaussian \longrightarrow L\acute{e}vy\text{-stable source distribution}$

$$\mathcal{L}(\alpha, R, r) = rac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-rac{1}{2}|qR|^{lpha}}$$

- From generalization of Gaussian, power-law tail: $\sim r^{-(d-2+lpha)}$
- The shape of the correlation function with Lévy source: $C(q) = 1 + \lambda e^{-(qR)^{\alpha}}$, where $\alpha = 1 \longrightarrow$ exponential and $\alpha = 2 \longrightarrow$ Gaussian
- We expect spatial power-law correlations at the CP ($\sim r^{-(d-2+\eta)}$) \longrightarrow Lévy-exponent α identical to correlation exponent η Corres. Hegyi, Zajc, EPJC36 (2004) 67

• Fit function: Bowler-Sinyukov $C(q) = 1 - \lambda + 1(1 + e^{-|qR|^{\alpha}) \cdot \lambda \cdot K(q)}$ Y.Sinyukov et al., Phys. Lett. B432 (1998) 248, M.G. Bowler,

Search for QCD critical point: femtoscopic correlations

- α : far from CP prediction (0.5) Rieger, Phys.Rev.B52 (1995) 6659 Be+Be $\alpha \sim 1.5 \longrightarrow$ anomalous diffusion Ar+Sc $\alpha \approx 2$ Gaussian source?
- R: Visible m_T dependence sign of transverse flow
- λ : no m_T dependence

MMP (WUT)

July 26, 2023

QCD 2023, Coimbra

Search for QCD critical point: proton intermittency

Second factorial moment as function of momentum bin size

 $\begin{array}{l} \mathsf{CP} \longrightarrow \mathsf{scale invariance} \longrightarrow \mathsf{power-law form of correlation} \\ \mathsf{function for large distances} \Leftrightarrow \mathsf{small momentum transfer} \Delta \vec{k} \\ \mathsf{Woisk}, \mathsf{Acta Phys. Polon.B 19,803-869; Bialas and Hwa, PLB 253,436-438; Diakonos et al., PoS (CPOD2006)010; \\ \mathsf{Hata and Stephanov, PR191, 102003 \\ \mathsf{Nata And Stephanov, PR191, 102003 \\ \mathsf{Na$

$$F_{2}(M) = \left\langle \frac{1}{M^{2}} \sum_{i=1}^{M^{2}} n_{i}(n_{i}-1) \right\rangle / \left\langle \frac{1}{M^{2}} \sum_{i=1}^{M^{2}} n_{m} \right\rangle^{2},$$

where $\langle ... \rangle$ indicates averaging over events
power-law dependence on M:
 $F_{2}(M) \sim (M^{2})^{\phi_{2}}$

Expected intermittency index ϕ_2 at CP is 5/6 assuming the 3-D Ising universality class of QCD.

No indication for power-law increase with bin size

Search for QCD critical point: proton intermittency

No indication for power-law increase with bin size

There is a disagreement between NA61/SHINE and STAR measurements $_{3. Wu, 15MD'21}$ - comparison of analysis procedures ongoing

Properties of the QCD matter: softening of EoS

Relation between rapidity width and sound velocity:

MMP (WUT)

32/18