Does quark-gluon plasma feature an extended
hydro. regime!
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QGP properties vs scale/gradient
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® Unexplored regime: QGP at mesoscopic scale where typical
gradient k is too large for vHydro. and too short for pQCD.

® Exploring QGP mesoscopy:

® Large angle scattering between jet and the medium.

e.g. Eramo, Rajagopal andYY, JHEP [9;
® Collectivity in small systems.

works by Kurkela, Mazeliauskas,
Wiedemann, BinWu, . ...

® This talk: medium response (how response changes with varying
gradient).



Medium response and excitations
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The analytic structure of retarded Green function Wiedemann-Wu, EPIC 19’

® The (linear) response of a thermal system to an in-homogeneous
disturbance is determined by excitations.

O(t, lz) = AHe_iQH(k)t e 1! 4 other excitations

Observables hydro. modes e.g. quasi-normal modes, quasi-particles

® Describing response is generally complicated as it involves
various excitations.

® Simplification?



Hydro. regime

Relaxation time approximation (RTA) kinetic equation
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® At small k, hydro. modes are gapped (smaller damping rate) from
non-hydro excitations and hence dominate the response.

® Hydro.regime: k < k;; where viscous hydro. works.

What happens when k > k;; ?



QGP-like systems

Romatschke, EP|C 16’. Amado-Hoyos-Landsteiner-Montero, JHEP 08
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® Extended hydro. regime (EHR):

® “sound dominance”: sound mode is gapped from other
excitations; shear channel is discussed in detail in our paper.

® the dispersion is different from ordinary sound (called high-
frequency sound in condense matter literature).

NB: 2306.09094 by Xiaojian Du et. al demonstrate the generality of sound dominance for a class of kinetic theory
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Extended hydro. regime in solid liquids
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liquid Hg, Petrillo and Sacchetti ,Advances in Physics 2 1’; many other examples

High frequency sound modes has been observed up to 1/k
comparable to intro-atom distances.
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The implication of EHR (if exists)
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® The presence of EHR seems generic. QGP?
® The collectivity at intermediate gradient.
® Description of medium’s mesoscopy might be simplified.

® Search for EHR via data-model comparison!?

NB: the notion of EHR bears a certain similarity to the far-from-equilibrium hydro. for expanding QGP. The main
difference is that EHR describes perturbation around a bulk profile but not the bulk evolution itself.



Towards describing EHR

® How to describe EHR and high-frequency sound through

extending hydro.? (Extending hydrodynamics is an active field in condensed
matter physics.)

® describing different systems with EHR from the same
framework.

® needed to test EHR conjecture via data-model comparison in
heavy-ion collisions.

® We propose an extension of Muller-Israel-Stewart (MIS) theory,
namely MIS* which serves the purpose.

Weiyao Ke andYY, PRL 23, 2208.01046; partly
inspired by Hydro+, Stephanov-YY PRD 18’



MIS*: deforming MIS equation

e Consider the decomposition: 7" = TH + 7t
1deal
® MIS Eqgns

Dnt = — 1 (ﬂ’W + ;70</“‘u”>) — ...

T
shear strength

® MIS* (for a conformal system):

71"“” — n/a<,uu1/> + 7"1.741/

dynamical

- | S
D = — — (7 + (= Mo u>) — ...

® MIS* parameters: ' ~ the effective viscosity in EHR and 7

controls the boundary separating hydro. and EHR.

/ When 0 = 0,
n T]Z- — .
o=— y = — y = 0 (Ist order hydro.);
n T, ¥ = 1 (2nd order hydro).
|10



MIS* vs kinetic theory
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MIS* describes both kinetic and AdS/CFT theory in EHR
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Extended hydro. response for Bjorken expanding plasma

® Motivation:
® complementing the study of a static medium;

® exploring the prospects of detecting EHR through jet-medium
Interaction.

® Consider e.g. energy-energy response function.
c.f. KOMPOST et al

oe(t,x) = | di'| G, (t,7ix—x")S(z,x")+ ...

/

7 “ X response function Source




RTA kinetic vs MIS*
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y-momentum response (5 different response funs)

MIS* describes energ)
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Summary
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hydro. extended hydro. regime

® We introduce extended hydro. regime (EHR) scenario for QGP-
like system at intermediate scale and illustrate its generality.

® Collective excitations dominate even at intermediate gradient.

® The description at mesoscopic scale simplifies under EHR
scenario.

® Observables: jet-medium interaction? small systems?

® Extension of hydro. based on “sound mode dominance”.
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EHR and Lattice

® Helping extracting transport coefficients from lattice with
ansartz motivated by EHR;

® Jest EHR via lattice? Euclidean correlation should be more
sensitive to EHR than to hydro. regime.

exciting things ahead!
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Back-up
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Flexibility/capability of MIS*
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® |ncreasing 0=#'/n increases damping rate.

® (y,0 ) in combination controls sound propagation in EHR.
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Discussion

o

Hydro. Extended Hydro. Regime

(characterized by 1, CS2 ,--)  (characterized by 17, 7. ...)

® The success of MIS* confirms that in extended hydro. regime
(EHR), the characterization of QGP mesoscopy can be simplified.

® Responses in different microscopic theories can be described by
the same effective models such as MIS*.

® Medium properties are characterized by a few parameters.
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Towards describing EHR

Grozdanov-Kovtun-Starients-Tadic, PRL 19’, JHEP |9;

Heller-Serantes-Spalinski-Svensson-Withers, PRD 21’
® Adding higher gradient terms (proliferation of inputs).

® An alternative: constructing a simple model with a few parameters
such that

® it reduces to hydro. in small k;

® describes sound mode in (at least part of) EHR.

EHR in MIS*

et
Hydro. EHR in some microscopic theories

MIS* (a simple yet non-trivial extension of Mueller-Israel-Stewart (MIS)
eqns) serves the purpose.

partly inspired by Hydro+, Stephanov-YY PRD |8’
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