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INTRODUCTION
● Magnetohydrodyanmics (MHD) describes the 

physics of electomagnetically charged plasmas [1].

● Electric fields are screened in a conducting plasma,

due to the presence of electrically charged particles.

Dynamics is dominated by magnetic fields called 

ideal MHD.

● Applications: Astrophysics including stars and the

interstellar medium, solar physics, heavy-ion 

collisions etc.

 [1] H. Alfvén, Nature 150, 405 (1942)
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● Cosmology: suppose that a particle (say a proton)

moves at the earth's solar distance R with the earth's

orbital velocity v. The gravitational and EM forces are

Ratio of the forces (                  ):

● Heavy ion collision:

WHY MHD IS IMPORTANT ?

Interplanetary magnetic field
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RELATIVISTIC
MAGNETO-
HYDRODYNAMICS

Formulation
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● Magnetohydrodyanmics (MHD) can be formulated as a charged fluid coupled to

dynamical electromagnetic fields.

● The dynamical equations of MHD are the energy-momentum and charge conservaton 

coupled to Maxwell’s equations

● The dynamical fields of MHD are

 

HYDRODYNAMICS AND ELECTROMAGNETISM
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● The plasma is characterised by its constituive relations

● For non-polarizable, non-magnetizable fluids, the energy-momentum tensor reads

● Similarly, the fluid charge current reads

 

MHD CONSTITUTIVE RELATIONS
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● It is well known that ordinary hydrodynamics is an effective theory valid in the low-frequency,

large-wavelength limit.

● Expansion parameter of this theory is the Knudsen number

● Microscopic details of the system can be safely integrated out if Kn<<1, and hence the system

can be defined by few macroscopic variables.

● At zeroth order in expansion the system is described by ideal hydrodynamics

● At first order in expansion the system is described by Navier-Stokes hydrodynamics.

GRADIENT EXPANISION & MHD

Microscopic
Macroscopic

Standard MHD appears as a natural extension of Navier-Stokes theory 
for conducting fluids
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Navier-Stokes hydro violates causality
Consider the classic diffusuion model in 1+1 dimension which starts from the 
continuity equation

and use the NS form of diffusion equation :

to get : Diffusion coefficient

which has the solution 

for an initial condition which is: 
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Restoring causality
Phenomenologically this can be achived by adding a causal time lag to the diffusion 
equation, i.e.,

relaxation time

with the equation of charge diffusion as:

called the “Telegrapher’s equation” [2].

[2] Hunt, Bruce J. (2005). The Maxwellians, Ithaca, USA: Cornell University Press. 
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● Ohm’s law, in its simplest covariant Navier-Stokes-type form, reads [3]

● The modification of the standard form of Ohm’s law also required since the build-up of

 the corresponding charge diffusion current needs a finite time [4].

● Causal second-order evolution equations for dissipative quantities can be 

derived from a fundamental microscopic theory, 

e.g kinetic theory [5,6].

 

 [3] C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla, Mon. Not. Roy. Astron. Soc. 394, 1727 (2009)

 [4] Z. Wang, J. Zhao, C. Greiner, Z. Xu, and P. Zhuang, Phys. Rev. C 105, L041901 (2022)

 [5] G. S. Denicol, E. Molnár, H. Niemi, and D. H. Rischke, Phys. Rev. D 99, 056017 (2019)

 [6] A. K. Panda, A. Dash, R. Biswas, and V. Roy, Phys. Rev. D 104, 054004 (2021)

OHM’S LAW & CHARGE DIFFUSION CURRENT
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OHM’S LAW & CHARGE DIFFUSION CURRENT
● In its most simplest form, second-order equation for charge diffusion 

reads

● In the rest frame of the fluid, and assuming conductivity and relaxation 
time as constant, the above equation can be cast into the following form:

which is the equation for a damped, driven harmonic oscillator. 
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APPLICATION TO
HEAVY-ION 
COLLISIONS

Simplified setup
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● The electromagnetic four-potential in the Lorenz gauge is given as

● We assume that the system is homogeneous in
the transverse plane, hence consider only the 
electromagnetic field near

COLLISION GEOMETRY & SETUP
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Au-Au collisions @
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●      and         are kept as free parameters. 

● Closer to initial config.. for large σ (frozen flux theorem), diffusive tails for 
small σ.        PRD 107, 056003 (2023), AD, M Shokri, L Rezzolla, D Rischke
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Time evolution of the charge diffusion current

● Large τ
V
 takes longer to approach its Navier-Stokes value and the magnitude 

is also smaller.
● Oscillations in underdamped case.        
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Time evolution of the magnetic field

● Longer τ
V
  (the solid blue vs the solid orange line) means an incomplete 

response of the charge diffusion current and hence leads to faster decay of 
the magnetic field at early times.
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Entropy production
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APPLICATION TO
HEAVY-ION 
COLLISIONS

Initially expanding case 
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Setup
● System initially expanding according to Bjorken flow v

z
=z/t

● We will use Milne coordirnates: 

● Energy density is constant in rapidity and fluid velocity is

● Electromagnetic fields transform as:

● Goal: to study the backreaction of EM fields on the fluid
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Why resistive MHD is needed?
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Joule heating 
negligible
Entropy prouction 
negligible !!
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Experimental Developments

STAR Collaboration: arXiv:2304.03430S 

● Ideal MHD not sufficient to describe 
charged directed flow splitting [1].

● Back reaction is important and in fact has
the  same order of magnitude as the 
splittiing.

● Development of 3+1D relativistic resistive
MHD simulation underway.

[1] G. Inghirami et al., Eur.Phys.J.C 80 (2020) 3, 293

https://arxiv.org/abs/2304.03430
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Take away...
● The standard Navier-Stokes form of Ohm’s law is acausal.

● Generalization of the law is analogous to an equation for driven damped 
harmonic oscillator.

● Longer relaxation time would lead to an incomplete generation of the charge 
diffusion current and hence faster decay of the magnetic field at early times.

● We have also studied the back-reaction of EM fields on the fluid and found 
that it would be important to describe charged particle directed flow. 

● Development of 3+1D causal relativistic resistive MHD simulation underway.
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