# Transient effects of charge diffusion on EM fields in heavy-ion collision

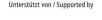
#### The 19th International Conference on QCD in Extreme Conditions

University of Coimbra

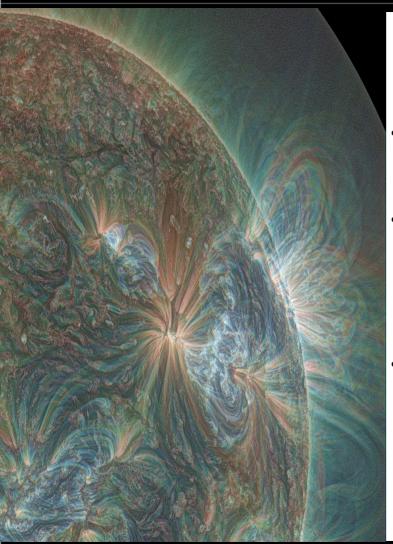
Ashutosh Dash (आश्रतोष दाश)







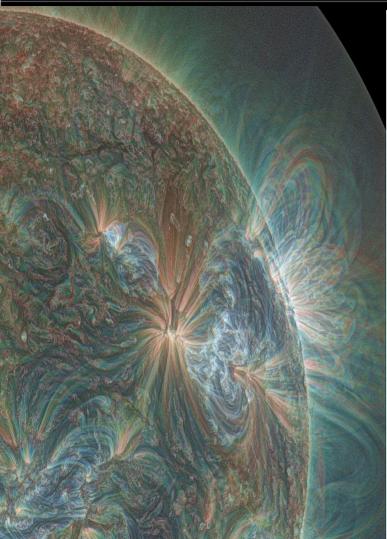
Alexander von Humboldt Stiftung/Foundation EL



# INTRODUCTION

- Magnetohydrodyanmics (MHD) describes the physics of electomagnetically charged plasmas [1].
- Electric fields are screened in a conducting plasma, due to the presence of electrically charged particles.
   Dynamics is dominated by magnetic fields called ideal MHD.
- Applications: Astrophysics including stars and the interstellar medium, solar physics, heavy-ion collisions etc.

[1] H. Alfvén, Nature 150, 405 (1942)



### WHY MHD IS IMPORTANT ?

• Cosmology: suppose that a particle (say a proton) moves at the earth's solar distance R with the earth's orbital velocity v. The gravitational and EM forces are

 $\mathbf{F}_{G} = -G \frac{Mm\mathbf{R}}{R^{3}} \qquad \mathbf{F}_{EM} = e(\mathbf{v}/c) \times \mathbf{B}$ Ratio of the forces ( $\mathbf{B} = 10^{-4} G$ ):  $\mathbf{F}_{EM}/\mathbf{F}_{G} \approx 10^{7}$ 

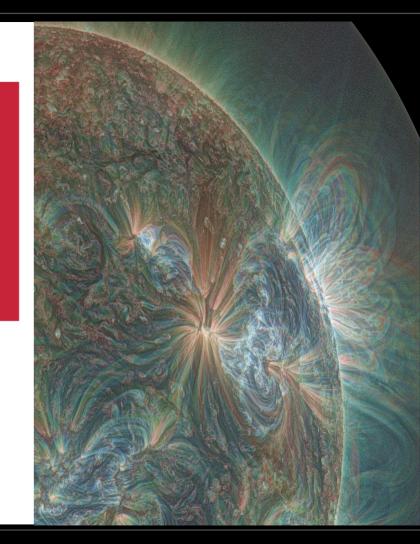
Interplanetary magnetic field

• Heavy ion collision:

 $eB \sim m_\pi^2 \sim 10^{18} \ G$ 

# RELATIVISTIC MAGNETO-HYDRODYNAMICS

## Formulation



#### HYDRODYNAMICS AND ELECTROMAGNETISM

- Magnetohydrodyanmics (MHD) can be formulated as a charged fluid coupled to dynamical electromagnetic fields.
- The dynamical equations of MHD are the energy-momentum and charge conservaton

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad \qquad \partial_{\mu}J^{\mu}_{f} = 0 ,$$

coupled to Maxwell's equations

$$\partial_{\mu}F^{\mu\nu} = J^{\nu} , \quad \epsilon^{\mu\nu\alpha\beta}\partial_{\mu}F_{\alpha\beta} = 0$$

• The dynamical fields of MHD are  $u^{\mu}(u^{\mu}u_{\mu}=1)$ , T,  $\mu$ ,  $\mathcal{E}^{\mu} \equiv F^{\mu\nu}u_{\nu}$ ,  $\mathcal{B}^{\mu} \equiv \frac{1}{2}\epsilon^{\mu\nu\alpha\beta}F_{\alpha\beta}u_{\nu}$ 

#### MHD CONSTITUTIVE RELATIONS

- The plasma is characterised by its constituive relations  $T^{\mu\nu}[u^{\mu}, T, \mu, \mathcal{E}^{\mu}, \mathcal{B}^{\mu}], J^{\mu}[u^{\mu}, T, \mu, \mathcal{E}^{\mu}, \mathcal{B}^{\mu}]$

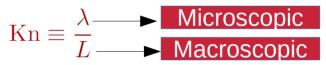
$$w \equiv \varepsilon + P$$
,  $dP = sdT + qn_f d\mu$ ,  $\varepsilon = sT + qn_f \mu - P$ 

• Similarly, the fluid charge current reads

$$J_f^{\mu} \equiv q \left( n_f u^{\mu} + V_f^{\mu} \right) \; .$$

### GRADIENT EXPANISION & MHD

- It is well known that ordinary hydrodynamics is an effective theory valid in the low-frequency, large-wavelength limit.
- Expansion parameter of this theory is the Knudsen number



- Microscopic details of the system can be safely integrated out if Kn<<1, and hence the system can be defined by few macroscopic variables.
- At zeroth order in expansion the system is described by ideal hydrodynamics
- At first order in expansion the system is described by Navier-Stokes hydrodynamics.  $\Pi = \lambda_{\Pi} \theta , V_f^{\mu} = \lambda_n \nabla^{\mu} \alpha , \pi^{\mu\nu} = \lambda_{\pi} \sigma^{\mu\nu}$

Standard MHD appears as a natural extension of Navier-Stokes theory for conducting fluids

## Navier-Stokes hydro violates causality

Consider the classic diffusuion model in 1+1 dimension which starts from the continuity equation  $\partial n_{x}(t, x)$ 

$$\frac{\partial n_f(t,x)}{\partial t} = -\nabla \cdot \mathbf{V}_f(t,x)$$

and use the NS form of diffusion equation :

to get : 
$$\frac{\partial n_f(t,x)}{\partial t} = \mathcal{D} \nabla^2 n_f$$

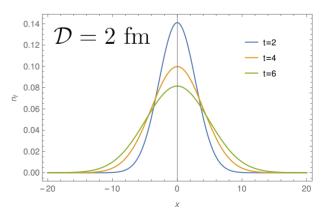
which has the solution

$$p(t, x|t_0, x_0) = \left(\frac{1}{4\pi \mathcal{D}(t - t_0)}\right)^{1/2} \exp\left(-\frac{(x - x_0)^2}{4\mathcal{D}(t - t_0)}\right)$$

for an initial condition which is:  $n_f(t_0, x) = \delta(x - x_0)$ 

$$\mathbf{V}_f(t,x) = -\mathcal{D}\nabla n_f(t,x)$$

Diffusion coefficient



8

# **Restoring causality**

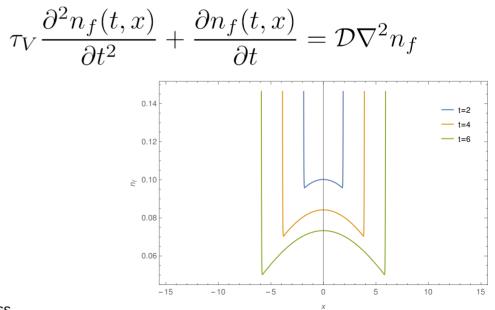
Phenomenologically this can be achived by adding a causal time lag to the diffusion equation, i.e.,

$$\tau_V \frac{\partial \mathbf{V}_f(t, x)}{\partial t} + \mathbf{V}_f(t, x) = -\mathcal{D}\nabla n(t, x)$$

$$\mathbf{V}_f(t, x) = -\mathcal{D}\nabla n(t, x)$$

with the equation of charge diffusion as:

called the "Telegrapher's equation" [2].



[2] Hunt, Bruce J. (2005). The Maxwellians, Ithaca, USA: Cornell University Press.

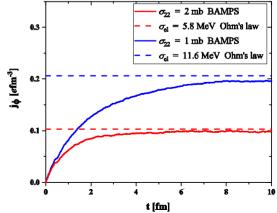
#### **OHM'S LAW & CHARGE DIFFUSION CURRENT**

Ohm's law, in its simplest covariant Navier-Stokes-type form, reads [3]

 $qV_f^{\mu} = q\kappa\nabla^{\mu}\alpha + \sigma\mathcal{E}^{\mu} \; .$ 

- The modification of the standard form of Ohm's law also required since the build-up of the corresponding charge diffusion current needs a finite time [4].
- Causal second-order evolution equations for dissipative quantities can be derived from a fundamental microscopic theory,
   e.g kinetic theory [5,6].

[3] C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla, Mon. Not. Roy. Astron. Soc. 394, 1727 (2009)
[4] Z. Wang, J. Zhao, C. Greiner, Z. Xu, and P. Zhuang, Phys. Rev. C 105, L041901 (2022)
[5] G. S. Denicol, E. Molnár, H. Niemi, and D. H. Rischke, Phys. Rev. D 99, 056017 (2019)
[6] A. K. Panda, A. Dash, R. Biswas, and V. Roy, Phys. Rev. D 104, 054004 (2021)



#### **OHM'S LAW & CHARGE DIFFUSION CURRENT**

In its most simplest form, second-order equation for charge diffusion reads

$$\tau_V q \dot{V}_f^{\langle \mu \rangle} + q V_f^{\mu} = q \kappa \nabla^{\mu} \alpha + \sigma \mathcal{E}^{\mu}$$

• In the rest frame of the fluid, and assuming conductivity and relaxation time as constant, the above equation can be cast into the following form:

$$\ddot{V}_f^i + 2\,\omega_0\,\zeta_d\,\dot{V}_f^i + \omega_0^2 V_f^i = \frac{\omega_0^2}{q}\,\epsilon^{ijk}\partial_j B_k$$

which is the equation for a damped, driven harmonic oscillator.

$$\omega_0 \equiv \sqrt{\sigma/\tau_V} \ , \zeta_d \equiv 1/(2\sqrt{\sigma\tau_V})$$

# APPLICATION TO HEAVY-ION COLLISIONS

# Simplified setup



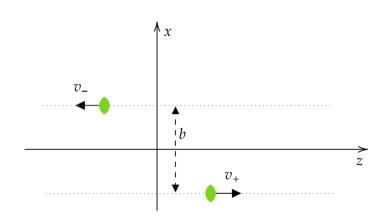
#### **COLLISION GEOMETRY & SETUP**

• The electromagnetic four-potential in the Lorenz gauge is given as

$$A^{\mu}_{\pm} = \left(\frac{Z\alpha_{\rm EM}\gamma}{r_{\pm}}, 0, 0, v_{\pm}\frac{Z\alpha_{\rm EM}\gamma}{r_{\pm}}\right),$$
  
$$r_{\pm}(x, y, z, t) \equiv \sqrt{(x \pm b/2)^2 + y^2 + \gamma^2(z - v_{\pm}t)^2}$$

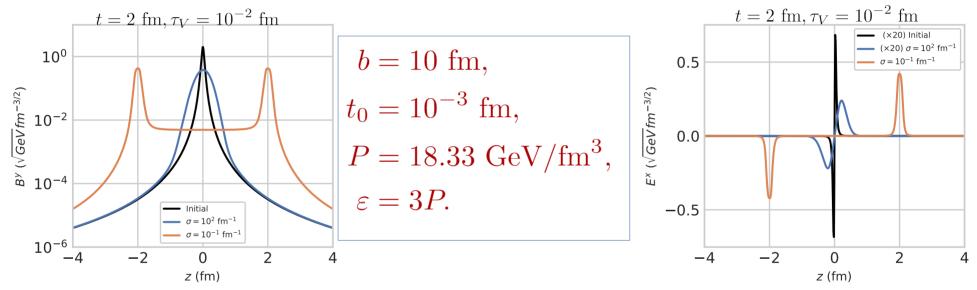
• We assume that the system is homogeneous in the transverse plane, hence consider only the electromagnetic field near  $\mathbf{x}_{\perp} = 0$ 

$$B^{y}(0,0,z,t) = \frac{b}{2} Z \alpha_{\rm EM} \left( \frac{1}{r_{0,+}^{3}} + \frac{1}{r_{0,-}^{3}} \right) \sinh Y_{\rm bm} ,$$
$$E^{x}(0,0,z,t) = \frac{b}{2} Z \alpha_{\rm EM} \left( \frac{1}{r_{0,+}^{3}} - \frac{1}{r_{0,-}^{3}} \right) \cosh Y_{\rm bm} ,$$



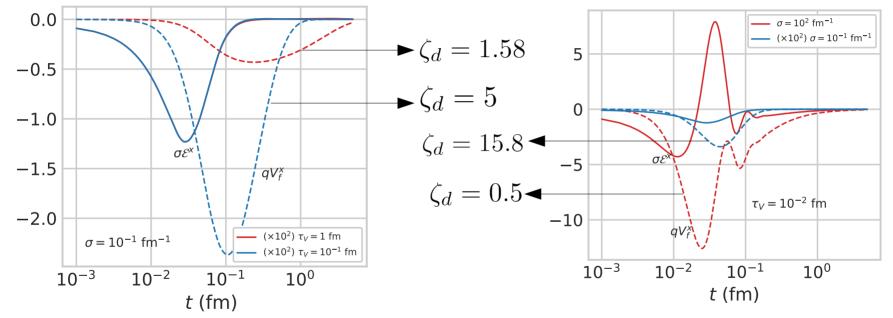
$$Y_{\rm bm} = {\rm Artanh} \sqrt{1 - 4m_N^2 / s_{NN}}$$

# Au-Au collisions @ $\sqrt{s_{NN}} = 200 \text{ GeV}$



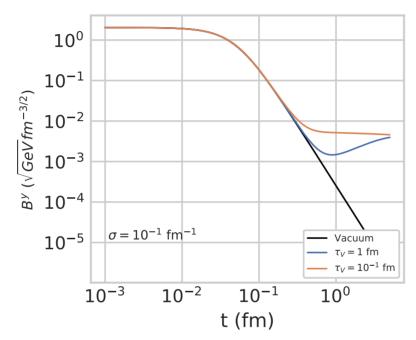
- $\sigma$  and  $\tau_V$  are kept as free parameters.
- Closer to initial config.. for large σ (frozen flux theorem), diffusive tails for small σ.
   PRD 107, 056003 (2023), AD, M Shokri, L Rezzolla, D Rischke

## Time evolution of the charge diffusion current



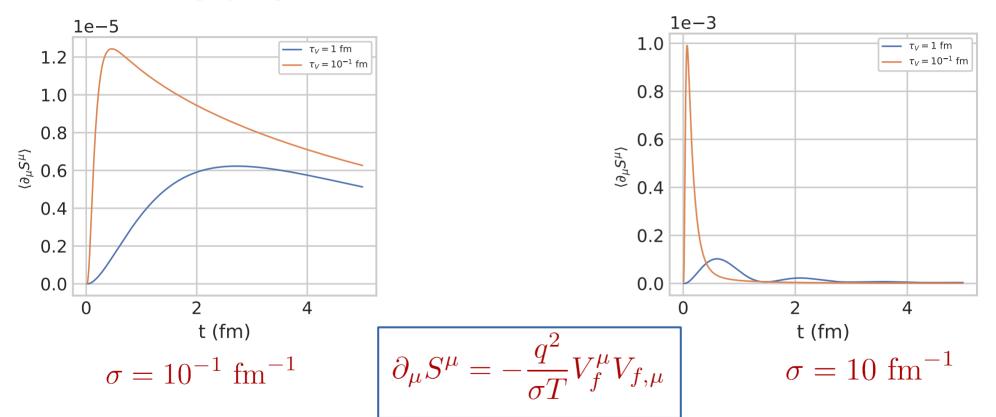
- Large  $\tau_v$  takes longer to approach its Navier-Stokes value and the magnitude is also smaller.
- Oscillations in underdamped case.

### Time evolution of the magnetic field



 Longer τ<sub>v</sub> (the solid blue vs the solid orange line) means an incomplete response of the charge diffusion current and hence leads to faster decay of the magnetic field at early times.

# **Entropy production**



APPLICATION TO HEAVY-ION COLLISIONS

Initially expanding case



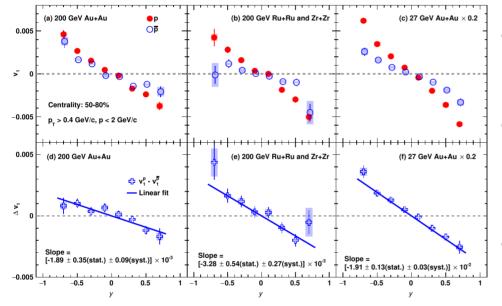
### Setup

- System initially expanding according to Bjorken flow  $v_z = z/t$
- We will use Milne coordinnates:  $\tilde{x}^{\mu} = (\tau, x, y, \eta)$
- Energy density is constant in rapidity and fluid velocity is  $~~{ ilde u}^\mu = (1,0,0,0)~$
- Electromagnetic fields transform as:  $\tilde{F}^{\mu\nu}(\tau_0, \mathbf{x}_{\perp}, \eta) = \frac{\partial \tilde{x}^{\mu}}{\partial x^{\rho}} \frac{\partial \tilde{x}^{\nu}}{\partial x^{\sigma}} F^{\rho\sigma}(\tau_0 \cosh \eta, \mathbf{x}_{\perp}, \tau_0 \sinh \eta)$
- Goal: to study the backreaction of EM fields on the fluid

# Why resistive MHD is needed?



### **Experimental Developments**



STAR Collaboration: arXiv:2304.03430

$$v_n(y) \equiv \frac{\int p_T dp_T d\phi \frac{dN}{dyp_T dp_T d\phi} \cos[n\phi]}{\int p_T dp_T d\phi \frac{dN}{dyp_T dp_T d\phi}}$$

- Ideal MHD not sufficient to describe charged directed flow splitting [1].
- Back reaction is important and in fact has the same order of magnitude as the splittiing.
- Development of 3+1D relativistic resistive MHD simulation underway.

[1] G. Inghirami et al., Eur.Phys.J.C 80 (2020) 3, 293

### Take away...

- The standard Navier-Stokes form of Ohm's law is acausal.
- Generalization of the law is analogous to an equation for driven damped harmonic oscillator.
- Longer relaxation time would lead to an incomplete generation of the charge diffusion current and hence faster decay of the magnetic field at early times.
- We have also studied the back-reaction of EM fields on the fluid and found that it would be important to describe charged particle directed flow.
- Development of 3+1D causal relativistic resistive MHD simulation underway.