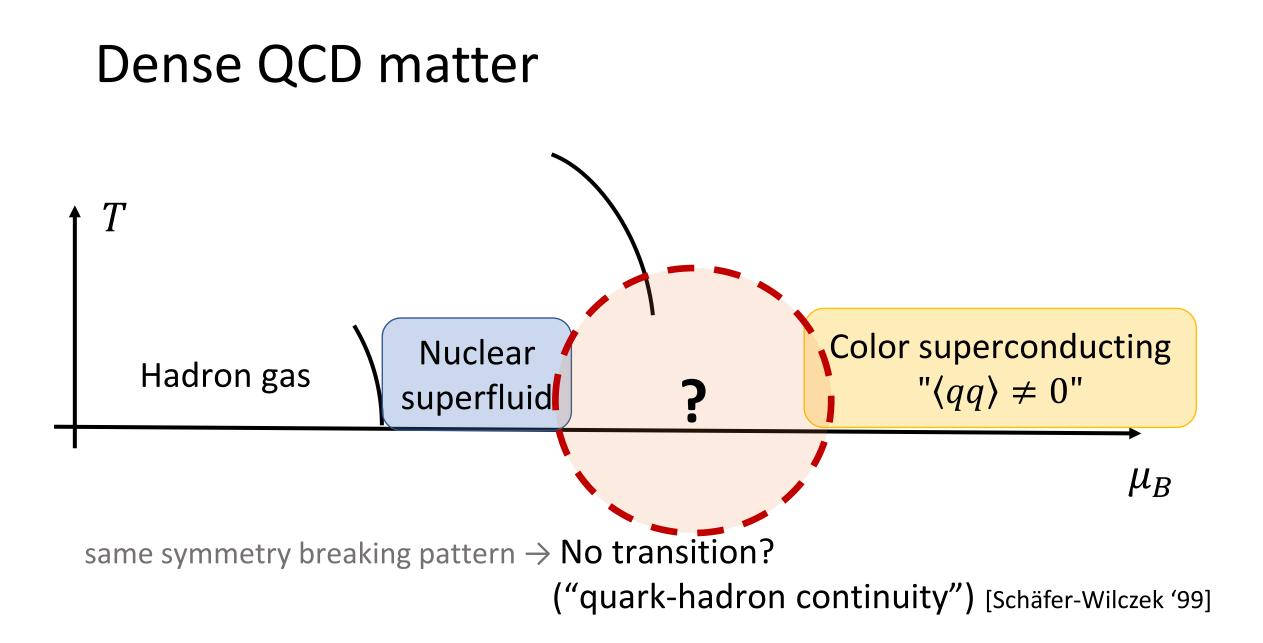
Higgs-confinement continuity in light of particle-vortex statistics

Yui Hayashi (YITP, Kyoto U.)

The 19th International Conference on QCD in Extreme Conditions July 27, 2023

arXiv:2303.02129 [hep-th]



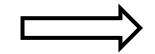
Higgs-confinement continuity

An idea behind quark-hadron continuity:

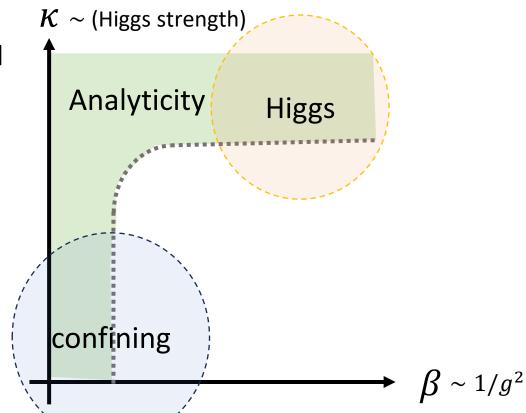
Higgs-confinement continuity

[Osterwalder-Seiler '78][Fradkin-Shenker '79][Banks-Rabinovici '79]

For fundamental gauge-Higgs systems, the confining regime (small β , κ) and Higgs regime (large β , κ) are connected by an analyticity region (without any transition).



Condensation of fundamental matter " $\langle \phi \rangle \neq 0$ " does not distinguish phases



The CFL diquark condensation is in (anti-)fundamental representation

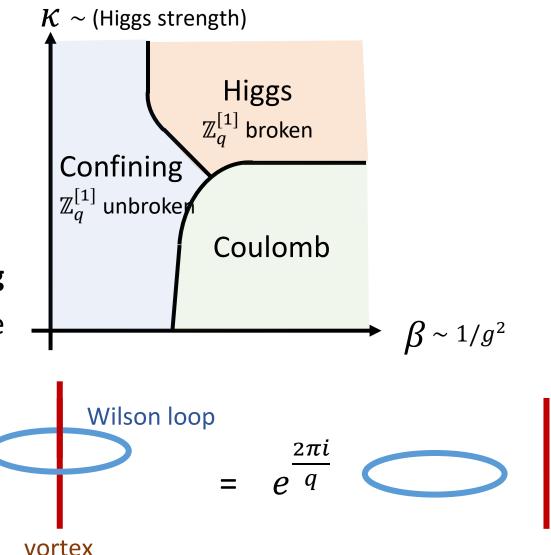
When distinguishable? to introduce the recent discussion.....

e.g.) charge-q Abelian Higgs Model (q > 1) The Higgs/confining phases are distinguished by perimeter-law/area-law of the Wilson loop (equivalently $\mathbb{Z}_{q}^{[1]}$ broken/unbroken)

Another characterization: topological ordering

In the (low-energy effective theory of) Higgs phase, we have two topological operators, showing nontrivial mutual statistics:

- Wilson loop: W(C)
- Vortex worldsheet: V(S) $\langle W(C)V(S) \rangle = e^{\frac{2\pi i}{q} \operatorname{Link}(C,S)} \langle W(C) \rangle \langle V(S) \rangle$



Recent discussion

Wilson loop

• Particle-vortex statistics in the CFL phase [Cherman-Sen-Yaffe '18]

Non-Abelian CFL vortex

Does this nontrivial AB phase signal a quark-hadron transition?

• This AB phase does not mean topological order [Hirono-Tanizaki '18 '19]

("." The CFL vortex is (partially) a global vortex, which does not become topological)

At least, the previous logic does not apply here \rightarrow continuity?

 Still, it was conjectured that the AB phase can be an order parameter for a Higgsconfinement transition, by studying an Abelian toy model (detailed later) [Cherman-Jacobson-Sen-Yaffe '20]. → transition?

how connected, concretely?

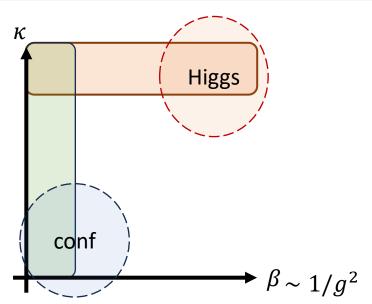
More constructively?

Main claim by a Fradkin-Shenker-like analysis

For superfluid fundamental gauge-Higgs systems, the Aharonov-Bohm phase around the vortex is continuous (or constant, if protected by symmetry) in the strong-coupling and deep-Higgs regions, connecting confining and Higgs regimes

Below, we illustrate this claim in the following two lattice models analogous to:

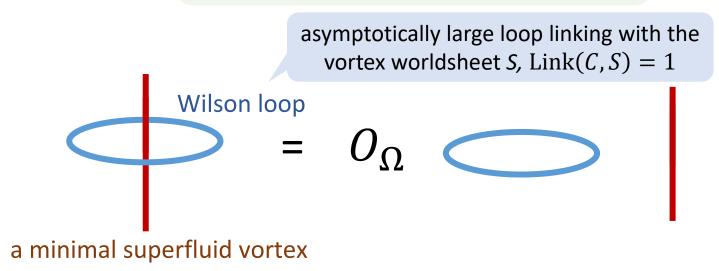
The Abelian toy model
Ginzburg-Landau model for CFL diquark



An order parameter?: Aharonov-Bohm phase

In what follows, we evaluate the AB phase O_{Ω} around a minimal superfluid vortex, schematically defined by,

$$O_{\Omega} := \lim_{|C| \to \infty} \frac{\langle W(C) V(S) \rangle}{\langle W(C) \rangle \langle V(S) \rangle}$$



Example 1: the Abelian toy model

used to argue a Higgs-confinement transition [Cherman-Jacobson-Sen-Yaffe '20].

Field contents:

3d compact U(1) gauge a + charge-(± 1) matters (ϕ_+, ϕ_-) + neutral scalar ϕ_0

Action:

$$S = \int \frac{1}{2e^2} |da|^2 + |D\phi_+|^2 + |D\phi_-|^2 + |d\phi_0|^2 + V_c(\phi_+) + V_c(\phi_-) + V_0(\phi_0) + \epsilon \phi_+ \phi_- \phi_0 + c.c.$$

 $V_0(\phi_0)$: wine bottle potential $\rightarrow \phi_0$ condensation (superfluidity)

 $V_c(\phi_{\pm}) = m_c^2 |\phi_{\pm}|^2 + \lambda_c |\phi_{\pm}|^4$: identical potential for charged matters (ϕ_+, ϕ_-)

AB phase as an order parameter?:

Higgs
 $O_{\Omega} = -1$
from classical vortex
configurations $D_{\Omega} = +1?$
 (ϕ_+, ϕ_-) decouple m_c^2/e^4 The AB phase must be ± 1 due to \mathbb{Z}_2 symmetry $[\phi_+ \rightarrow \phi_{\mp}, a \rightarrow -a] \rightarrow$ transition somewhere?

Example 1: the Abelian toy model

Result: the AB phase is -1 (constant!) in both regions (skip lattice details)

Deep Higgs region

In the deep Higgs limit, the gauge field a is frozen to be $\frac{d\varphi_+ - d\varphi_-}{2}$ (with $\phi_{\pm} = v e^{i \varphi_{\pm}}$). The minimal ϕ_0 vortex rotates ($\phi_+ \phi_-$) by 2π asymptotically.

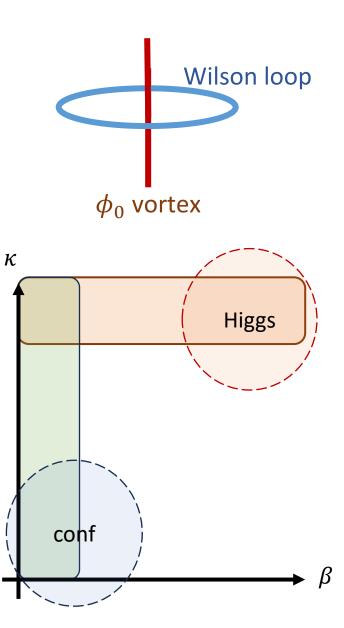
$$\langle W(C)V(S)\rangle \sim \left\langle e^{i \int_C \frac{d\phi_+ - d\phi_-}{2}} \right\rangle_{\text{vortex}} \sim -1$$

in accordance with [Cherman-Jacobson-Sen-Yaffe '20].

• Strong coupling region

Even if charged matters are heavy, an asymptotically large Wilson loop is dominated by screened perimeter-law part, which can be affected by ϕ_0 vortex.

For example, in the "deep confining regime" ($\beta \to +0$, small κ), $\langle W(C)V(S) \rangle = \left\langle \prod_{\ell \in C} U_{\ell} \right\rangle_{\text{vortex}} \sim \left\langle \prod_{\ell \in C} [(\phi_{+} \text{ hopping})^{*} + (\phi_{-} \text{ hopping})] \right\rangle_{\text{vortex}}$ $e^{i\theta_{1}} + e^{i\theta_{2}} = (e^{i\theta_{1}}\sqrt{e^{i(-\theta_{1}+\theta_{2})}})|e^{i\theta_{1}} + e^{i\theta_{2}}| \to \sim \langle e^{i\int_{C} \frac{d\varphi_{+} - d\varphi_{-}}{2}} \rangle_{\text{vortex}} \sim -1 \text{ (matched!)}$



(Actually, $O_{\Omega} = -1$ without κ expansion)

Example 2: Ginzburg-Landau model for diquark

Field contents:

(anti-)fundamental CFL diquark $\Phi^{ai} \sim \epsilon^{abc} \epsilon^{ijk} q_{bj}^t C \gamma^5 q_{ck}$ We add superfluid "dibaryon" for nuclear superfluid phase

SU(N) gauge $a + (N \times N)$ -matrix-valued fundamental matter Φ + neutral scalar ϕ_0 <u>Action</u>:

$$S = \int |f|^2 + |D\Phi|^2 + |D\phi_0|^2 + V(\operatorname{tr} \Phi^{\dagger} \Phi) + V_0(\phi_0) + \epsilon \phi_0^*(\det \Phi) + c.c.$$

 $V_0(\phi_0)$: wine bottle potential $\rightarrow \phi_0$ condensation (superfluidity)

By tuning $V(\operatorname{tr} \Phi^{\dagger} \Phi)$, this model has superfluid confining regime [nuclear superfluidity] and Higgs regime [CFL].

(apparent) mismatch of AB phase:

Example 2: Ginzburg-Landau model for diquark

We can perform the similar analysis on an analogous lattice model

Deep Higgs region

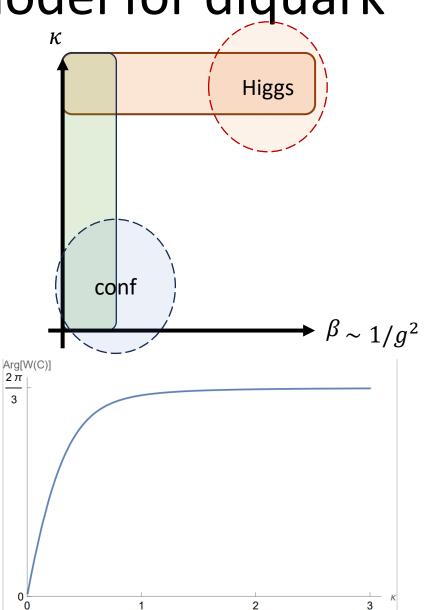
 $\langle W(C)V(S)\rangle \sim e^{\frac{2\pi i}{N}}$

reproducing [Cherman-Sen-Yaffe '18]

Strong coupling region

The AB phase is not a constant [at N = 3] and trivial in the deep confining limit ($\beta \rightarrow 0$, small κ) $\langle W(C)V(S) \rangle \sim 1$

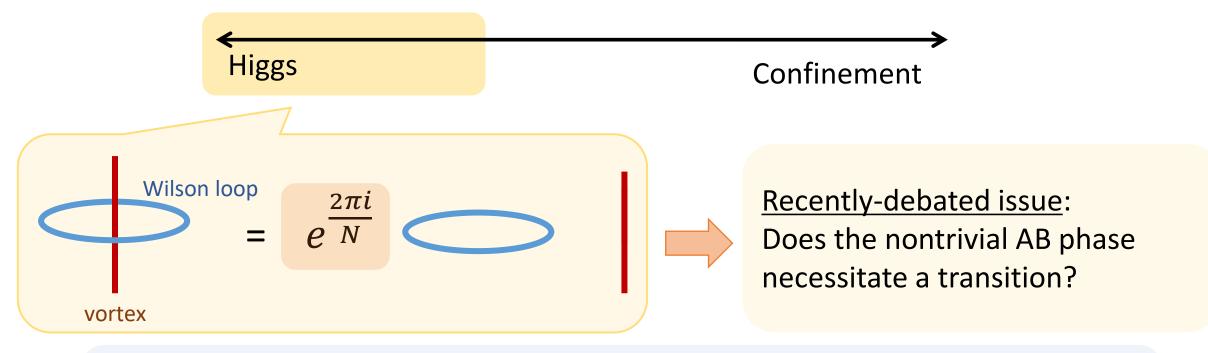
Still, the AB phase is **continuous** and smoothly interpolates between 1 ($\kappa \rightarrow +0$) and $e^{\frac{2\pi i}{N}}(\kappa \rightarrow +\infty)$ in the strong coupling limit ($\beta \rightarrow 0$):



Summary

e.g.) diquark condensation in dense QCD

In some superfluid gauge-Higgs systems,



<u>Claim:</u> For fundamental superfluid gauge-Higgs systems, the AB phase respects the Higgs-confinement continuity.

the quark-hadron continuity is still a possible scenario.