Relativistic description of neutron star matter with latest experimental and observational constraints

Prasanta Char

Space sciences, Technologies and Astrophysics Research (STAR) Institute, University of Liège

Collaborators: Chiranjib Mondal, Francesca Gulminelli, Micaela Oertel

19th International Conference on QCD in Extreme Conditions (XQCD 2023)

July 26-28, 2023, Department of Physics (University of Coimbra)

Outline

- A very brief introduction to neutron stars (NSs)
- Description of nuclear matter
- Models specific to this work and the constraints used
- Results
- Summary

Structure of a Neutron Star

Figure: Schematic picture of a NS Interior

3/21

Equation of State and Mass-Radius

One to one correspondence between Equation of State (EOS) and mass-radius

4/21

Tidally Deformed Stars

• If a static spherically symmetric star of mass M and radius R is placed in a time-independent external tidal field \mathcal{E}_{ij} , a quadrupole moment Q_{ij} is induced onto the star and to linear order

$$Q_{ij} = -\lambda \mathcal{E}_{ij},$$

• Tidal deformation parameter λ related to the l=2 dimensionless Love number k_2

$$\lambda = \frac{2}{3}k_2R^5.$$

• Observational parameter in LIGO-Virgo, ET: $\Lambda = \lambda/M^5$

NS Observations that an EOS must satisfy

Precise mass-measurement of massive NSs:

```
 \begin{array}{ll} (1.908\pm0.016) M_{\odot} & \text{Arzoumanian et al, ApJS 235, 37 (2018).} \\ (2.01\pm0.04) M_{\odot} & \text{Antoniadis et al, Science 340, 448 (2013).} \\ (2.08\pm0.07) M_{\odot} & \text{E. Fonseca et al, ApJL 915 L12 (2021).} \\ \end{array}
```

• BNS merger event GW170817 provides bounds on tidal deformability (Λ), and pressure at $2\rho_0$; Abbott et al, PRL 121, 161101 (2018):

$$\Lambda_{1.4} = 190^{+390}_{-120} \Rightarrow \Lambda_{1.4} \le 580, \ P(2\rho_0) = 3.5^{+2.7}_{-1.7} \times 10^{34} \ \mathrm{dyn/cm^2}$$

- NICER collaboration provided:
 - 1) Simultaneous mass-radius measurements of PSR J0030+0451

```
M = 1.34^{+0.15}_{-0.16} M_{\odot}, R = 12.71^{+1.14}_{-1.19}km Riley et al, ApJL, 887, L21 (2019).
```

$$M = 1.44^{+0.15}_{-0.14} M_{\odot}$$
, $R = 13.02^{+1.24}_{-1.06}$ km Miller et al, ApJL, 887, L24 (2019).

2) Radius measurements of J0740+6620

$$R = 12.39^{+1.30}_{-0.08}$$
 km Riley et al, ApJL, 918, L27 (2021).

$$R = 13.7^{+2.6}_{-1.5}$$
km Miller et al, ApJL, 918, L28 (2021).

Description of Nuclear Matter:

$$\delta = \text{"Isospin asymmetry"} = (\rho_{\rm n} - \rho_{\rm p})/\rho, \qquad \chi = (\rho - \rho_{\rm 0})/3\rho_{\rm 0}$$

4 D > 4 P > 4 B > 4 B > B 900

EOS of Dense Matter from Nuclear Physics

Difficulties

- Constituents are not known.
- Interaction between constituents are not fully known.
- Uncertainties in the many-body description.
- \Rightarrow EOS is model dependent.

Phenomenological approaches are most widely used.

- Based on effective Interaction.
 - 1. Non-relativistic Skyrme-Interaction (\sim 240)
 - 2. Relativistic Mean Field (RMF) models (\sim 270)

```
Dutra et al. PRC 85, 035201 (2012); Dutra et al. PRC 90, 055203 (2014); Oertel et al. RMP 89, 015007 (2017)
```

Our main objective: Exploring the parameter space to quantify the uncertainties.

RMF model

- Interaction between baryons is described via exchange of mesons.
- The most general form of the interaction Lagrangian density:

$$\mathcal{L}_{\mathrm{DD}} = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - M)\psi + \Gamma_{\sigma}(\rho)\sigma\overline{\psi}\psi - \Gamma_{\omega}(\rho)\overline{\psi}\gamma^{\mu}\omega_{\mu}\psi - \frac{\Gamma_{\rho}(\rho)}{2}\overline{\psi}\gamma^{\mu}\rho_{\mu} \cdot \tau\psi$$

$$+ \frac{1}{2}(\partial^{\mu}\sigma\partial_{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\vec{B}^{\mu\nu}\vec{B}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu} \cdot \rho^{\mu},$$

$$\sigma, \ \omega_{\mu}, \text{and} \ \rho_{\mu} \ \text{are meson fields}.$$

• For the density dependent (DD) models, the coupling parameters Γ_{σ} , Γ_{ω} , and Γ_{ρ} are density dependent and do not have nonlinear terms.

$$\Gamma_i(\rho) = a_i + (b_i + d_i x^3) e^{-c_i x},$$

for $i = \sigma, \omega, \rho$, and $x = n/n_0$.

P. Gogelein, E. N. E. van Dalen, C. Fuchs, and H. Muther, Phys. Rev. C 77, 025802 (2008)

Saturation properties of nuclear matter:

Paremeter sets are obtained by exploring the uncertainties of the saturation properties of nuclear matter:

- Saturation density: $\rho_{sat} = (0.135, 0.195) \; \mathrm{fm}^{-3}$
- Binding energy per nucleon: $E_{sat} = (-14, -17)$ MeV.
- Incompressibility: $K_{sat} = (150, 350)$ MeV.
- Symmetry energy: $E_{sym} = (20, 45)$ MeV.
- Symmetry energy slope : $L_{sym} = (20, 180)$ MeV.

Additionally, we use the constraints coming from chiral EFT calculations from Drischler et al., Phys. Rev. C 93, 054314 (2016)

Results: Unified EOS

- High density EOS is constructed for a set of model parameters correspondening to a unique set of nuclear matter parameters
- Low density EOS is calculated within the compressible liquid drop model (CLDM) model for the aformentioned set of nuclear matter parameters.
- β -equlibrium is applied over the whole range.
- The crust and the core are matched with the continuity of pressure and chemical potential.
- For more details, see arXiv:2307.12364.

Results:

Figure: Pressure (panel a) and proton fraction (panel b) as a function of baryon density n_B for two example EOS models with negative and positive K_{sym} , respectively.

12 / 21

Results: SNM Parameters

Results: Isospin Parameters

Prasanta Char (ULiege)

Neutron Star Matter

July 26, 2023

Results: EOS at β -equlibrium

Results: Mass - Radius

Figure: Mass-radius (left) and mass-tidal deformability (right) relations along with the Model I and II obtained in the present study. 1σ constraints from the NICER observations are also indicated in the mass-radius panel.

Results: Proton fraction

Summary:

- Any study of dense matter EOS is heavily model dependent.
 Therefore, a metamodelling approach to dense matter is very helpful to refine our knowledge.
- Within the GDFM type density-dependent RMF model, a wide range of EOSs can be generated with diverse nuclear matter properties that will be able to satisfy present observational constraints.
- One key finding is the large variation of proton fraction within this model.
- Our future objective is to apply this model to study finite nuclei properties
- For more details, see arXiv:2307.12364.

Thank You

Backup

Figure: Speed of sound

Backup

Figure: Correlations

Backup

Figure: With HESS J1731-347

21 / 21