First order stable and causal anisotropic hydrodynamics

Masoud Shokri Based on 2304.14563 [hep-th] in collaboration with Fabio Bemifica and Mauricio Martinez

Institute for Theoretical Physics, Goethe University

XQCD 2023

Causality vs. the gradient expansion

Hydrodynamics is an effective theory for understanding the collective behavior of fluids not far from equilibrium.

Equations of hydrodynamics are conservation laws

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu}_{I} = 0$$

- We assume an uncharged fluid $J_I^{\mu} = 0$
- The fluid that we have in mind is the QGP produced in HICs
 - * $abla_{\mu}$ is the covariant derivative
 - * $T^{\mu\nu}$ is the energy-momentum tensor, and J^{μ}_{I} are the charge currents.

A perfect fluid is spatially isotropic for a comoving observer.

In local rest frame (LRF):

$$T^{\mu\nu} = \begin{bmatrix} \varepsilon & & & \\ & P & \\ & & P & \\ & & & P \end{bmatrix}$$

- Conformal fluid $g_{\mu\nu}T^{\mu\nu} = 0 \implies \varepsilon = 3P$
- Arbitrary observer sees $T_0^{\mu\nu} = \varepsilon u^{\mu}u^{\nu} + P\Delta^{\mu\nu}$ with $\Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$
 - * ε is the energy density, and P is the pressure
 - * The metric $g_{\mu\nu}$ has mostly plus sign ${
 m diag}\,(-+++)$, therefore $u^{\mu}u_{\mu}=-1$

$$T^{\mu\nu} = T_0^{\mu\nu} + T_1^{\mu\nu} + \mathcal{O}\left(\partial^2\right)$$

- ▶ Identify basic quantities $(\varepsilon, u^{\mu}) \sim \mathcal{O}(1)$
- . . . from (Weyl-covariant) derivatives of these quantities $(\mathcal{D}_{\mu}\varepsilon)$ and $\mathcal{D}_{\mu}u_{\nu}$
- ... build scalar $(u^{\mu}\mathcal{D}_{\mu}\varepsilon, \mathcal{D}_{\mu}u^{\mu})$, vector $(\mathcal{D}_{\mu}\varepsilon, u^{\nu}\mathcal{D}_{\nu}u_{\mu})$, and tensor $(\sigma_{\mu\nu} = \frac{1}{2} (\mathcal{D}_{\mu}u_{\nu} + \mathcal{D}_{\nu}u_{\mu}))$ combinations
- \blacktriangleright ... coupled with transport coefficients (like shear viscosity η)
 - * Weyl covariant-derivative [Loganayagam (2008)]: $\mathcal{D}_{\mu}u_{\nu} = \Delta^{\alpha}_{\mu}\nabla_{\nu}u_{\nu} - \Delta_{\mu\nu}\nabla_{\alpha}u^{\alpha}/3 \text{ and}$ $\mathcal{D}_{\mu}\varepsilon = \nabla_{\mu}\varepsilon + 4\varepsilon(u^{\alpha}\nabla_{\alpha}u_{\mu} - u_{\mu}\nabla_{\alpha}u^{\alpha}/3)$

Let's assume something simpler instead of hydrodynamics

- Continuity equation (EOM) $\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{J} = 0$
- The number density $n = \mathcal{O}(1)$ is the only basic object
- . . . we should build $\mathbf{J} = \mathcal{O}(\partial)$ out of it
- The EOM $\implies \frac{\partial n}{\partial t} = \mathcal{O}(\partial^2)$ on-shell
- Hence $\mathbf{J} = -D \vec{
 abla} n + \mathcal{O} ig(\partial^2 ig)$ and

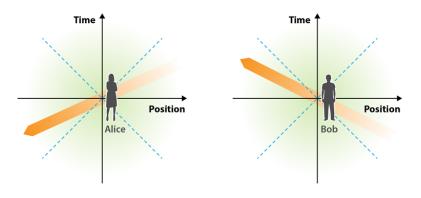
$$\frac{\partial n}{\partial t} = D\nabla^2 n$$

* The example adopted from [Kostädt and Liu (2000)] and [Romatschke and Romatschke (2019)]

The same prescription gives rise to **Navier-Stokes** hydrodynamics. But there is a problem that was observed by [Hiscock and Lindblom (1985)].

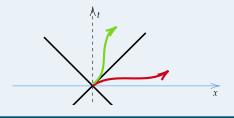
- ► Consider a 1+1 world $n(t,x) = n(k) \exp(-i\omega t + ikx)$
- Diffusion equation $\implies \omega = -iDk^2$: looks stable
- ▶ ... but in a boosted frame $\omega(k=0) \propto i/D \implies$ instability
- The asymptotic (k → ∞) group velocity exceeds the speed of light [Pu et al. (2010)]
 - * HL showed that if ${\rm Im}\,\omega(k)>0$ for some domain of k, then the spatial norm of perturbations grows with time, without a bound
 - * Here, NS refers to the first-order on-shell theories (Landau-Lifshitz and Eckart)
 - * Nonhydro (gapped) mode: $\omega(k=0) \neq 0$

One observer sees stable modes, and the other sees unstable ones!



G. Denicol (https://physics.aps.org/articles/v15/149)

- Eq. of characteristics: $(\partial_x \phi)^2 = 0 \implies \phi(t, x) = t = \text{const}$
- Domain of influence . . .
- ▶ $n(t_0, x_0)$ affects anywhere in $t > t_0$ (inside and outside)

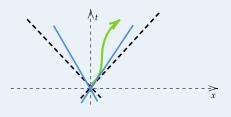


 \blacktriangleright A hyperbolic equation is required \rightarrow two families MIS approach (promote J): $\partial_t n + \nabla \cdot \mathbf{J} = 0$ $\tau_I \partial_t \mathbf{J} + \mathbf{J} + D \vec{\nabla} n = 0$ BDNK approach (offshell regulators): $n \to \mathcal{N} = n + \tau_n \partial_t n + \mathcal{O}(\partial^2) \quad \mathbf{J} = -D\nabla n + \mathcal{O}(\partial^2)$ in $\partial_t \mathcal{N} + \nabla \cdot \mathbf{J} = 0$ For example [Israel and Stewart (1979)] DNMR [Denicol et al. (2012)] is used in state of the art simulations

* BDN [Bemfica et al. (2018)] [Bemfica et al. (2022)] K [Kovtun (2019)]

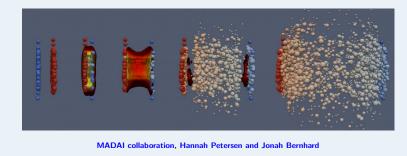
BDNK aHydro

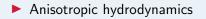
- Telegraph equation $\partial_t n + \tau_n \partial_t^2 n D \partial_x^2 n = 0$
- Characteristics $\phi(t, x) = x \pm t \sqrt{D/\tau_n}$
- Causality demands off-shell term ($\tau_n \neq 0$) and $\tau_n > D > 0$
- [Gavassino (2022)] Causality + Stability in LRF \implies stability in any other frame



Causality of Anisotropic BDNK

[Martinez and Strickland (2010)] - [Florkowski and Ryblewski (2011)]: In a heavy collision, there is a preferred spatial direction.





$$T^{\mu\nu} = \begin{bmatrix} \varepsilon & & & \\ & P_{\perp} & & \\ & & P_{\perp} & \\ & & & P_l \end{bmatrix}$$

More generally

$$T^{\mu\nu} = \varepsilon \, u^{\mu} u^{\nu} + \left(P_l - P_\perp \right) l^{\mu} l^{\nu} + P_\perp \, \Delta^{\mu\nu}$$

Spacelike anisotropy vector $l_{\mu}l^{\mu} = 1$ and $l_{\mu}u^{\mu} = 0$

Dissipative fluxes from kinetic theory [Molnár et al. (2016)]

General form

• Can we use BDNK expansion without kinetic theory?

A general form adopted from [Molnár et al. (2016)]

$$T^{\mu\nu} = \mathcal{E} u^{\mu} u^{\nu} + (\mathcal{P}_{l} - \mathcal{P}_{\perp}) l^{\mu} l^{\nu} + \mathcal{P}_{\perp} \Delta^{\mu\nu} + 2 M u^{(\mu} l^{\nu)} + 2 W^{(\mu}_{\perp u} u^{\nu)} + 2 W^{(\mu}_{\perp l} l^{\nu)} + \pi^{\mu\nu}_{\perp}$$

► For example $\mathcal{E} = \varepsilon + \mathcal{O}(\partial)$ $\mathcal{P}_{l,\perp} = P_{l,\perp} + \mathcal{O}(\partial)$

► Second law of thermodynamics → zeroth-order, and first-order on-shell terms

► Zeroth-order EOM → off-shell terms

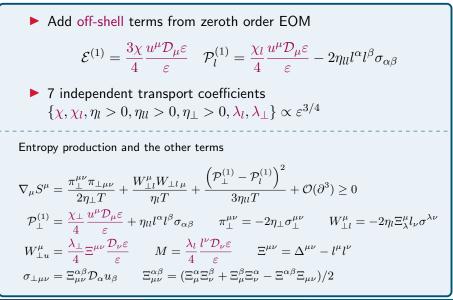
*
$$A^{(\mu\nu)} = \frac{1}{2} \left(A^{\mu\nu} + A^{\nu\mu} \right)$$

* The vectors $W_{\perp\,l}^\mu,\,W_{\perp\,u}^\mu$, and the symmetric traceless tensor $\pi_{\perp}^{\mu\nu}$ are orthogonal to u and l

- The generating functional is $W_0 = \int d^4x \sqrt{-g} P_{\perp}$
- Therefore $TS^{\mu} = P_{\perp}u^{\mu} u_{\nu}T^{\mu\nu}$
- $\blacktriangleright \ \nabla_{\mu}S^{\mu} \ge 0$
- Domain of applicability $\mathcal{O}(\partial^2)$
- Difference between NS and BDNK should not be measurable
 On-shell terms only
- ▶ No external agent $\rightarrow P_{\perp} = P_l = \varepsilon/3$

$$\nabla_{\mu}S^{\mu} = -\frac{\pi_{\perp}^{\mu\nu}\sigma_{\perp\mu\nu}}{T} - \frac{2W_{\perp l}^{\mu}l^{\nu}\sigma_{\mu\nu}}{T} - \frac{\varepsilon - 3P_{\perp}}{4T}\frac{u^{\alpha}\mathcal{D}_{\alpha}\varepsilon}{\varepsilon} - \frac{(\mathcal{P}_{l} - \mathcal{P}_{\perp})l^{\mu}l^{\nu}\sigma_{\mu\nu}}{T} - \frac{\mathcal{E}^{(1)}u^{\nu} + W_{\perp u}^{\nu} + Ml^{\nu}}{4T}\frac{\mathcal{D}_{\nu}\varepsilon}{\varepsilon} + \mathcal{O}\left(\partial^{3}\right)$$

The final form



Masoud Shokri

Method of characteristics

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R = (8\pi G/c^4)T^{\mu\nu}$$

• Pure gravity sector decouples \rightarrow lightlike surfaces

characteristics equation = gravity sector \times matter sector

Furthermore matter sector = $4 \text{ roots} \times 6 \text{ roots}$

▶ 4 roots → off-shell terms are required for causality

$$\lambda_{\perp} > \max(\eta_l, \eta_{\perp}) \ge 0 \qquad \qquad \chi > 0$$

For the 6 roots part we provide an algorithm

For example

$$\eta_{\perp} = \eta > 0 \quad \eta_l = \frac{2\eta}{3} \quad \eta_{ll} = \frac{5\eta}{6} \quad \lambda_{\perp} = \frac{13\eta}{2} \lambda_l = 6\eta$$
$$\chi = 5\eta \quad \chi_{\perp} = \frac{11\eta}{2} \quad \chi_l = \frac{16\eta}{3}$$

is a causal set

Also linearly stable in LRF

...and in a moving frame

* Plane wave $\delta X(t,x^i) o e^{-iT_0x^\mu k_\mu} \delta X(k^\mu)$ where $k^\mu = (\omega,k^i)$

* EOM
$$\rightarrow M^{AB} \delta X^B = 0 \rightarrow \det(M) = 0 \rightarrow \omega = \omega(k)$$

Concluding remarks

- First-order stable and causal anisotropic hydrodynamics for a conformal uncharged fluid.
- Constraints for the nonlinear causality of the theory
- Off-shell terms are required if the theory is to be causal
- Linear stability analysis using plane wave perturbations around a homogeneous background
- ▶ Bjorken : A = (P_⊥ − P_l) /P has off-shell second-order contributions, in contrast to isotropic BDNK
- Bjorken: The behavior of attractors is closely related to causality conditions: If the causality conditions are violated a reheating occurs in very early times

- Anisotropy at the zeroth order
- General case without conformal invariance
- Charged fluids
- BDNK theory of resistive dissipative magnetohydrodynamics

- Bemfica, F. S., Disconzi, M. M., and Noronha, J. (2018). Causality and existence of solutions of relativistic viscous fluid dynamics with gravity. *Phys. Rev. D*, 98(10):104064.
- Bemfica, F. S., Disconzi, M. M., and Noronha, J. (2022). First-Order General-Relativistic Viscous Fluid Dynamics. *Phys. Rev. X*, 12(2):021044.
- Denicol, G. S., Niemi, H., Molnar, E., and Rischke, D. H. (2012). Derivation of transient relativistic fluid dynamics from the Boltzmann equation. *Phys. Rev. D*, 85:114047. [Erratum: Phys.Rev.D 91, 039902 (2015)].
- Florkowski, W. and Ryblewski, R. (2011). Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions. *Phys. Rev. C*, 83:034907.
- Gavassino, L. (2022). Can We Make Sense of Dissipation without Causality? *Phys. Rev. X*, 12(4):041001.
- Heller, M. P. and Spalinski, M. (2015). Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation. *Phys. Rev. Lett.*, 115(7):072501.
- Hiscock, W. A. and Lindblom, L. (1985). Generic instabilities in first-order dissipative relativistic fluid theories. *Phys. Rev. D*, 31:725–733.

References II

- Israel, W. and Stewart, J. M. (1979). Transient relativistic thermodynamics and kinetic theory. Annals Phys., 118:341–372.
- Kostädt, P. and Liu, M. (2000). Causality and stability of the relativistic diffusion equation. *Physical Review D*, 62(2).

Kovtun, P. (2019). First-order relativistic hydrodynamics is stable. JHEP, 10:034.

- Loganayagam, R. (2008). Entropy Current in Conformal Hydrodynamics. JHEP, 05:087.
- Martinez, M. and Strickland, M. (2010). Matching pre-equilibrium dynamics and viscous hydrodynamics. *Phys. Rev. C*, 81:024906.
- Molnár, E., Niemi, H., and Rischke, D. H. (2016). Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation. *Phys. Rev. D*, 94(12):125003.
- Pu, S., Koide, T., and Rischke, D. H. (2010). Does stability of relativistic dissipative fluid dynamics imply causality? *Phys. Rev. D*, 81:114039.
- Romatschke, P. and Romatschke, U. (2019). *Relativistic Fluid Dynamics In and Out of Equilibrium*. Cambridge Monographs on Mathematical Physics. Cambridge University Press.

In Milne coordinates

$$u^{\mu} = (1, 0, 0, 0)$$
 $l^{\mu} = \frac{1}{\tau} (0, 0, 0, 1)$

Bjorken symmetries

$$\pi_{\perp}^{\mu\nu} = 0 \qquad W_{\perp l}^{\mu} = 0 \qquad W_{\perp u}^{\mu} = 0 \qquad M = 0$$

EOM with scaled transport coefficients

$$9\tilde{\chi}\frac{\tau^{2}\dot{T}}{T} + 18\tilde{\chi}\frac{\tau^{2}\dot{T}^{2}}{T^{2}} + \left(\frac{3\tau(9\tilde{\chi} - \tilde{\chi}_{\perp})}{T} + 12\tau^{2}\right)\dot{T} + 4\tau T + 3\tilde{\chi} - 2\tilde{\chi}_{\perp} - 4\tilde{\eta}_{ll} = 0$$

• Reduction of order $w = T\tau$ and $f(w) = \frac{\tau}{w} \frac{\mathrm{d}w}{\mathrm{d}\tau}$ [Heller and Spalinski (2015)]

$$\frac{9\tilde{\chi}}{4}f(w)^2 + wf(w)\left(1 + \frac{3}{4}\tilde{\chi}f'(w)\right) - \frac{6\tilde{\chi} + \tilde{\chi}_{\perp}}{2}f(w) + \frac{3\tilde{\chi} + \tilde{\chi}_{\perp} - \tilde{\eta}u}{3} - \frac{2w}{3} = 0$$

Bjorken flow II

Late times solution

$$f(w) = \frac{2}{3} + \frac{\tilde{\eta}_{ll}}{3w} + \frac{\tilde{\eta}_{ll}(\tilde{\chi}_l + 5\tilde{\chi}_{\perp})}{18w^2} + \mathcal{O}\left(\frac{1}{w^3}\right)$$

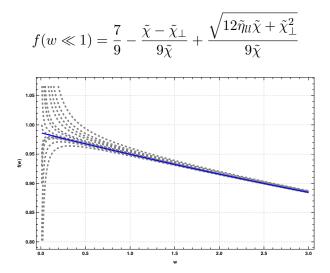
Linear corrections to the series

$$\delta f(w) \sim \exp\left(-\frac{2w}{\tilde{\chi}}\right) w^{\frac{\tilde{\eta}_{ll}+\tilde{\chi}_{\perp}}{\tilde{\chi}}}$$

Slow-roll attractor

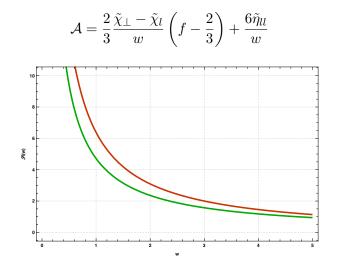
$$f(w)_{\text{slowroll}} = \frac{7}{9} - \frac{\tilde{\chi} - \tilde{\chi}_{\perp}}{9\tilde{\chi}} - \frac{2w}{9\tilde{\chi}} + \frac{\sqrt{(2w - \tilde{\chi}_{\perp})^2 + 12\tilde{\eta}_{ll}\tilde{\chi}}}{9\tilde{\chi}}$$

Initial condition for the numerical attractor



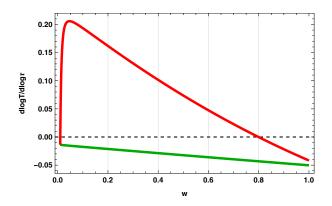
Bjorken flow IV

Pressure anisotropy

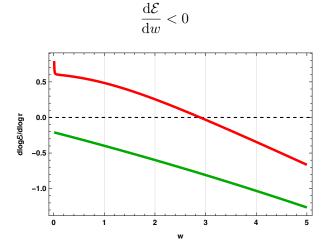


Causality conditions prevent reheating

$$\frac{2}{3} < f(0) < 1 \implies \chi_l > 4\eta_{ll} > 0$$



▶ The same condition is required for



Bjorken flow VII

 Only for the causal set, the offshell (nonphysical) entropy decreases initially

