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Motivation

The goal of this work is to search the critical point (a hypothetical endpoint of first-order phase transition line (QGP-HM) that has properties of second-
order phase transition) of the strongly interacting matter by measuring second scaled factorial moments of proton multiplicity distribution from a selection
of Pb+Pb collisions at beam momentum of 13A GeV/c (

√
sNN ≈ 5.1 GeV) and 30A GeV/c (

√
sNN ≈ 7.5 GeV), and Ar+Sc collisions at beam momenta of

13A-150A GeV/c (
√
sNN ≈ 5.1-17 GeV) using cumulative variables and statistically independent data points.

Second scaled factorial moments

In NA61/SHINE [1], intermittency analysis [2] is performed at mid-rapidity, and particle fluctuations
are studied in the transverse-momentum plane to search the QCD critical point [3, 4] by measuring
scaled factorial moments of multiplicity distribution:
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ni: numbers of particles in ith bin
< .... >: averaging over events

M : number of subdivision intervals of the selected range ∆

When the system is a simple fractal and F2(M) follows a power law dependence [5, 6, 7, 8]:

F2(M) = F2(∆) · (M2)ϕ2 (2)

where critical exponent or intermittency index for proton intermittency, ϕ2 = 5
6 ≈ 0.83 [6]

The statistical uncertainties can be calculated using the statistical uncertainty propagation:
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New approach to intermittency analysis

Cumulative variables: The SFMs are sensitive to
the shape of the single-particle momentum distribu-
tion, which biases the signal of critical fluctuations.
In our approach, to eliminate the bias, the cumula-
tive transformation technique [9] is used, which has
the following properties:Cumulative variables

Instead of using px and py, one can use cumulative quantities:
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• transform any distribution into uniform one (0,1)

• remove the dependence of F2 on the shape of the
single-particle distribution

• intermittency index of an ideal power-law correlation
function system described in two dimensions in momentum
space was proven to remain approximately invariant after
the transformation
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(example for 0-5% Ar+Sc at 150A GeV/c)
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• transforms single-particle distribution into a
uniform one ranging from 0 to 1

• remove the dependence of F2(M) on the shape
of the single-particle distribution

• intermittency index of an ideal power-law cor-
relation function was proven to remain invari-
ant after the transformation

Statistically independent data points:
Statistically-independent data subsets are used to
obtain results for each subdivision number. As a
result,

• for different subdivision numbers, results are
statistically independent

• only diagonal elements of the covariance ma-
trix are non-zero, and the complete relevant
information needed to interpret the results is
easy to present graphically

Proton intermittency results: Ar+Sc data
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No indication for power-law increase with bin size and/or
scaling

Proton intermittency results: Pb+Pb data
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Power-Law model

The Power-Law model generates events that repro-
duce the experimental multiplicity and transverse
momentum distributions of particles. Correlated-
particle pairs’ transverse momentum difference fol-
lows a power-law distribution:

ρ(| ~∆pT |) = (| ~∆pT |)−ϕ2 (4)

It has two main parameters:
• ratio of correlated to uncorrelated particles
• power-law exponent (ϕ2)

Lots of model data sets are generated:
• correlated-to-all ratio: vary from 0.0 to 2.0%,
• power-law-exponent: vary from 0.0 to 1.0,

and compared with the experimental data.
H. Adhikary et al.[for NA61/SHINE Collaboration], arXiv:2305.07557v1

Exclusion plot ( for Ar+Sc at 150A GeV )
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Figure 14: Exclusion plot, the p-values, for the Power-law Model parameters – the fraction of correlated protons
and the power-law exponent. The white areas correspond to p-values less than 1%. The exclusion plot for the fine
subdivisions.

Figure 14 shows obtained p-values as a function of the fraction of correlated protons and the power-law
exponent. White areas correspond to a p-value of less than 1% and may be considered excluded (for this
particular model). Results for the coarse subdivision have low statistical uncertainties, thus small devi-
ations from the behavior expected for uncorrelated particle production due to non-critical correlations
(conservation laws, resonance decays, quantum statistics, ...), as well as possible experimental biases
may lead to significant decrease of the p-values.

The intermittency index φ2 for an infinite system at the QCD critical point is expected to be φ2 = 5/6,
assuming that the latter belongs to the 3-D Ising universality class. If this value is set as the power-law
exponent of the Power-law Model with coarse subdivisions (Fig. 14), the NA61/SHINE data on central
40Ar + 45Sc collisions at 150A GeV/c exclude fractions of correlated protons larger than about 0.1%.

7 Summary

This paper reports on the search for the critical point of strongly interacting matter in central 40Ar + 45Sc
collisions at 150A GeV/c. Results on second-order scaled factorial moments of proton multiplicity dis-
tribution at mid-rapidity are presented. Protons produced in strong and electromagnetic processes in
40Ar + 45Sc interactions and selected by the single- and two-particle acceptance maps, as well as the
identification cuts are used.

The scaled factorial moments are shown as a function of the number of subdivisions of transverse mo-
mentum space – the so-called intermittency analysis. The analysis was performed for cumulative and
non-cumulative transverse momentum components. Independent data sets were used to calculate results
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white area: p-value < 0.01
exclusion plots for parameters of the Power-Law model

Proton intermittency summary
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CHEMICAL FREEZE-OUT

Search for the CP
via proton intermittency:

Becattini, Manninen and Gazdzicki, Phys.Rev.C73(2006) 044905
Summarize the ongoing NA61/SHINE critical point search

program via proton intermittency of Pb+Pb and Ar+Sc data
sets on the diagram of chemical freeze-out temperature and

chemical potential
- - no indication of a power-law increase - -
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