Towards a universal description of hadronic phase of QCD

Dr. Aman Abhishek¹ Dr. Sayantan Sharma

¹Post Doctoral Fellow
Institute of Mathematical Sciences, Chennai, India
19th International Conference on QCD in Extreme Conditions
University of Coimbra, Portugal, 26th July, 2023

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 1916 International Conference on QCD in Extreme Con

Results 000000000 Conclusions and future directions

Outline

2 Nuclear Models

3 Results

4 Conclusions and future directions

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Co

< E

Motivation ●	Nuclear Models 00	Results 00000000	Conclusions and future directions
Motivation			

- Finite temperature and finite density QCD explored using effective models such as PNJL, PQM, HRG, etc.
- Study in a purely hadronic model keeping confinement in mind.
- Nuclear mean field models well constrained from data.
- Learn what nuclear mean field models can tell us about finite temperature QCD.
- Universal hadronic interactions within the confined phase of QCD.

- Nuclear Models work well at high densities.
- Constrained from experiments such as neutron skin depth, maximum mass of neutron star, nuclear saturation properties, tidal deformability, etc.
- Consist of nucleons, hyperons interacting through sigma, omega, strange meson fields, etc.
- Have attractive and repulsive interactions built in.

Image: A image: A

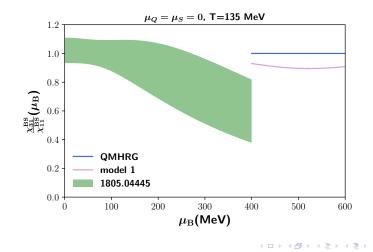
Phys. Rev. C. 99, 052802, R. Nandi, P. Char, S. Pal

- Considered about 269 models.
- Three models were found to be best fit.
 - Greco-Liu : Doesn't have strange degrees of freedom.
 - NL ρ : Couplings are density dependent.
 - Bunta-Gmuca : Contains strange degrees of freedom.

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Con Towards a universal description of hadronic phase of QCD

(a)

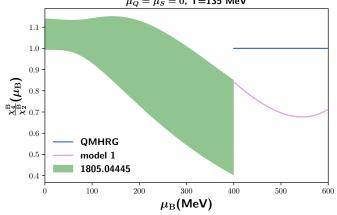
RESULTS


Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Co

Results

Conclusions and future directions

æ


$\overline{\chi^{\mathcal{BS}}_{31}/\chi^{\mathcal{BS}}_{11}}$ in Bunta-Gmuca model

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Con

Results 00000000

χ_4^B/χ_2^B in Bunta-Gmuca model

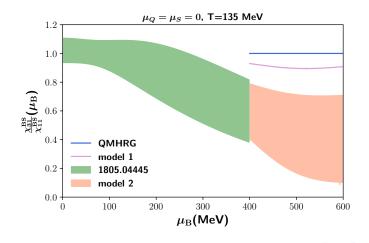
 $\mu_Q=\mu_S=0$, T=135 MeV

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India

Results 000000000 Conclusions and future directions

Extension to finite temperature

- Nuclear mean field models have too few degrees of freedom.
- Hadronic spectrum is known to be much larger.
- Couplings of heavier hadrons unknown, hence we introduce couplings
 - $g_{Non-strange} = \alpha_{NS} g_P$
 - $g_{strange} = \alpha_S g_{\Lambda}$.


Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19¹⁸ International Conference on QCD in Extreme Con Towards a universal description of hadronic phase of QCD

Results 000000000

Conclusions and future directions


æ

$\chi^{BS}_{31}/\chi^{BS}_{11}$ in extended model

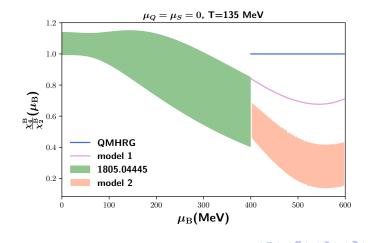
Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Co

Motivation	Nuclear Models	Results	Conclusions and future direction
0	00	00000●000	

- To match upper boundary of lattice band in $\chi^{BS}_{31}/\chi^{BS}_{11}$
 - $\alpha_{NS} = 0.15, \ \alpha_S = 0.15.$

• To match lower boundary of lattice band in $\chi^{BS}_{31}/\chi^{BS}_{11}$

•
$$\alpha_{NS} = 0.2, \ \alpha_S = 0.7$$


Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 10th International Conference on QCD in Extreme Con Towards a universal description of hadronic phase of QCD

< □ > < □ > < 三 > < 三 > < 三 > ○ < ○

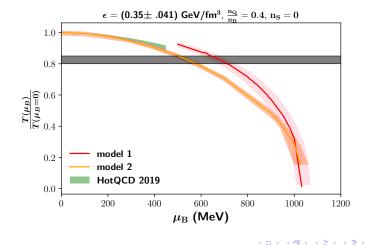
Results 0000000000

Conclusions and future directions

χ_4^B/χ_2^B in extended model

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Co

(日)


Few observations regarding couplings

- $\chi^{BS}_{31}/\chi^{BS}_{11}$ was found to be more sensitive to α_S .
- χ_4^B/χ_2^B was found to be more sensitive to α .
- Minimum value of $\alpha_{\rm NS}=$ 0.15 is needed to cover the lattice band.
- Value of $\alpha_{\rm NS}>$ 0.2 tends to overestimate lattice band in $\chi_4^B/\chi_2^B.$

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Con Towards a universal description of hadronic phase of QCD Results 00000000

Conclusions and future directions

Constraining the location of critical end point

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Co

通 ト イ ヨ ト イ ヨ ト

Conclusions

- Extension of nuclear model and comparison with lattice gives better estimates of susceptibility.
- $\sigma \omega$ interaction may be important.
- More precise lattice data in future can constrain nuclear models.

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19¹⁹ International Conference on QCD in Extreme Con Towards a universal description of hadronic phase of QCD

Future Directions

- A universal hadronic model can be constrained by both lattice QCD and high density data.
- If such a model is found it may also give reasonable estimate of CEP and first order line.
- Beyond mean field calculations are important.

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Con Towards a universal description of hadronic phase of QCD

Post Doctoral Fellow Institute of Mathematical Sciences, Chennai, India 19th International Conference on QCD in Extreme Co

Image: A math a math

< ∃⇒

æ