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Introduction

O past six years or so have seen a rapid rise of applications of machine learning (ML)

in fundamental science, particle physics, theoretical physics

o of course ML has been around for quite some time, especially in experimental
particle physics

o hevertheless, there is an exponential increase in activity
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ML in lattice field theory

explored in all aspects of LFT:

o configurations — generating ensembles, tuning algorithms

o observables — correlators, thermodynamics, ...

o analysis — fitting, phase classification, ill-posed inverse problems, ...

o more generally: which method to use, why does it (not) work, understand ML

Applications of machine learning to lattice quantum field theory
SNOWMASS paper, Boyda, Aarts, Lucini et al, arXiv:2202.05838 [hep-lat]



Outline

" two-page introduction to supervised ML

o classification: order-disorder transition (by now classic application)
o generating ensembles: normalising flow (popular application)
o quantum field-theoretical machine learning (new conceptual ideas to explore)

= biased towards own work and interests in lattice field theory



One-slide introduction to supervised ML

o attempt to fit a function or probability distribution to describe lots of data

o can be an actual function (regression) or a classification boundary (dog vs cat)

o functional form is not known: use a “universal approximator”, such as neural network
o linear combinations with weights and biases + nonlinear “activation” functions

O many, many, many internal parameters, determine these using training data

o generalise, make predictions for unseen cases, generate new instances, ...



Neural networks, deep learning

input layer — hidden layers — output layer

many degrees of freedom (“neurons”

associated with sites of network
weights w;; (connections) and biases b; (on-site) are tunable parameters
learning: parameters are adjusted by minimising some cost or loss function

NN should then encode some probability distribution and generate/classify/generalise

https://dvl.in.tum.de/teaching/i2dl-ws18/



Outline

o classification of phases of matter: order-disorder transition

O generating ensembles: normalising flow

o quantum field-theoretical machine learning



. Ve
Classification of phases of matter ///

o matter can exist in different phases
o prototype: 2d Ising model -> ordered/disordered or cold/hot phases
o task: determine phase a system is in, determine critical coupling or temperature

Published: 13 February 2017

Machine learning phases of matter

Juan Carrasquilla ™ & Roger G. Melko

Nature Physics 13, 431-434(2017) | Cite this article

1350 cites

Ordered -- ? -- Disordered



Phase classification: (by now) standard procedure

o use your favourite architecture, e.g. Convolutional Neural Network
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CONFIGURATION CONV+ReLU

* input: train on sets of configurations away from the transition

* output: assign probability to be in ordered or disordered phase
o standard supervised classification problem

o apply to unseen configurations and predict



What can we add?

o give a physical interpretation to neural network (NN) prediction
o interpret output from a NN as an observable in a statistical system
* input: configurations, distributed according to Boltzmann weight

* output: observable, “order parameter” in statistical system
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Extending machine learning classification capabilities with histogram reweighting,
Bachtis, Aarts, Lucini, Phys. Rev. E 102 (2020) 033303 [2004.14341 [cond-mat.stat-mech]]



Output of NN as physical observable

o once you accept this: opens up possibility to use “standard” numerical/statistical methods
mmm) histogram reweighting: extrapolation to other parameter values

o starting from computation at given f3: extrapolate to other [ values
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6P

Critical behaviour from NN observables

* determine L dependent susceptibility 6P and its maximum at 5.(L)
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symmetry-broken symmetric
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Mapping distinct phase transitions to a neural network, Bachtis, Aarts, Lucini  (Binder cumulant, Susceptibi“ty)
Phys. Rev. E 102 (2020) 053306 [2007.00355 [cond-mat.stat-mech]]



Outline

O classification of phases of matter: order-disorder transition

o generating ensembles: normalising flow

o quantum field-theoretical machine learning



Generating configurations in LFT

well-known problems in MCMC.: critical slowing down, topological freezing
generate configurations starting from “simple” distribution
perform change of variables to reach desired distribution: invertible map

O O O O

simple example

Box-Mueller transformation: from uniform distribution to Gaussian distribution

normalising flow, trivialising map

o many applications in e.g. image generation in ML literature

o applications to lattice field theory (since 2019)

Flow-based generative models for Markov chain Monte Carlo in lattice field theory
Albergo, Kanwar, Shanahan, Phys. Rev. D 100 (2019) 3, 034515 [1904.12072 [hep-lat]]



Generating configurations: normalising flow

P a gt
1@
. L@

r(z) pr (@)
81 8i 8ix1 8n

from Gaussian distribution r(z) to desired distribution p(¢)

generated by neural network, sequence of invertible (matrix + shift) transformations
trained by minimising distance between learned and target distribution

due to checkerboard structure: Jacobian of learned transformation is trivial

O O O O O

“provably exact”: insert Metropolis-Hastings step at the end

Introduction to Normalizing Flows for Lattice Field Theory, Albergo et al, arXiv:2101.08176 [hep-lat]
Aspects of scaling and scalability for flow-based sampling of lattice QCD, Abbott et al, 2211.07541 [hep-lat]



Generating configurations: normalising flow

o target distribution:  Piarget(P), learned distribution:  Piearnedq(P)

o compare distributions e.g. with Kullback-Leibler divergence

Plearned (®) >0

D (Prearned | | Ptarget) = fD(P Dlearned (¢) In Prarget(®)

o philosophy: much easier to sample from learned distribution via trained network



Normalising flow: applications to QCD

challenges:

o higher dimensions: not 2d (images), but 3d and 4d spacetime

o gauge symmetry: large internal symmetry, do not want to sample redundant dof

o construct gauge equivariant coupling layers (commute with gauge transformations)
o gauge invariant input distribution = gauge invariant output distribution

0% HMC (Chroma)
10 04 Flow (512 PF)

0% HMC (Chroma)
0¢ Flow (512 PF)

first application in 4d QCD
with Ny = 2 ona 4* lattice

o scalability? i #%

L/LHMC
—
o
S
———
—_—

0.75 ‘ 0.75

Sampling QCD field configurations with gauge-equivariant flow models, OHD 00005 050 DD 000 040 w0z o ot 02
Abbott et al, PoS LATTICE2022 (2023) 036 [2208.03832 [hep-lat]]

(a) Plaquette (b) Polyakov loop



(Gauge equivariance

deep connections to recent developments in ML

o coordinate independence
o local reference frame

o Convolutional Neural Nets on Riemannian manifolds
applications in

= yision

see posters by

* medical imaging Daniel Schuh and
Matteo Favoni

= climate patterns

Coordinate Independent Convolutional Networks--Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds,
Weiler, Forré, Verlinde, Welling, arXiv preprint arXiv:2106.06020 [cs.LG]

Gauge equivariant convolutional networks and the icosahedral CNN, Cohen, Weiler, Kicanaoglu, Welling

International conference on Machine learning, 1321-1330 [arXiv:1902.04615v3 [cs.LG]
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Outline

O classification of phases of matter: order-disorder transition
O generating ensembles: normalising flow

o quantum field-theoretical machine learning



Can we understand ML using QFT methods?

neural network:
o system with many fluctuating degrees of freedom
o connected via links

o represents probability distribution

= can we use stat mech/QFT methods?

= vyes, already studied since 1980s

take a fresh look using our favourite tools

Quantum field-theoretic machine learning, Bachtis, Aarts, Lucini
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]



Restricted Boltzmann Machine

simplest example of a NN: two-layer generative network

O

O

O

O

O

visible layer: to encode probability distribution

hidden layer: to encode correlations

restricted: no connections within a layer

degrees of freedom on two layers can be spins, say +1, or continuous, or mixed

weights connect the nodes, biases on the nodes

Aarts, Lucini, Park, in preparation



RBM: generative network

o energy-based method
Information forwarding & retrieval

1
¢i7 1 € (17Nv) h’aa a € (13Nh) p(¢7 h) — _e_S(¢7h’)

Z
Wiq

Visible Hidden Z:/quDhe—S(ﬁb’h)
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.y

o probability distribution




Scalar field RBM

use field theory approach: start with “free fields”: Gaussian-Gaussian RBM

1
distribution: p(¢,h) = Ee—S(aﬁ,h) 7 = /quDh e~ S(®h)

: 1 1
energy (or action): S(p,h) = Z éufcpf + Z ﬁ(ha —n,)? — Z O;w; g

no interaction between nodes in a layer, bilinear coupling between layers

only quadratic terms, add interactions later, e.g. ¢* terms



Gaussian scalar field RBM

o induced distribution on visible layer

p(9) = /th(¢7 h) = %GXP —% Z ¢iKijp; + Z Jidi

o scalar field with kinetic (all-to-all) term K;; = ,uzzdij — o? wamwT-
and source J;, = sz’ana
a

o unusual Gaussian LFT: what is the weight matrix W and bias n?



RBM probability function

o RBM should reproduce target distribution, determine K;; = ,uzzéij —g” Z wz-ang
a
o learn from data or directly from known distribution

o simplest case: target theory = LFT of free scalar field in 1 or 2d

o kinetic matrix is LFT inverse propagator, K% ~ p? + m?

1

o can solve for weight matrix WW7T = =
o

(,u2]l = Kd)) =K



Exact results for N, = N,

(infinitely) many solutions for weight matrix: X is symmetric and positive-definite

1. Cholesky decomposition K = LLY : W =L  triangular

2. diagonalisation K = ODOT = OVDOTOVDOT : W =WT = OV DO”

3. non-uniqueness: internal symmetry W — WOr => ¢ Wh — ¢’ WOrh = ¢' WH
in practice

o all equally valid, realisation depends on initialisation

o non-observable degeneracy due to internal symmetry on hidden layer



RBM training/architecture

o analytical solution usually not available

o train RBM numerically by maximising log-likelihood function
qguestions we would like to understand, for NNs in general and here:
what determines the optimal architecture? number of hidden nodes?

what is the role of internal parameters, e.g. RBM mass parameter p??

what if these parameters are chosen incorrectly?

o O O O

can one make generic statements?

use LFT insights, apply to MNIST data




What if Nh < Nv 7

o analytical result: number of hidden nodes acts as an ultraviolet regulator
o consider spectrum of induced quadratic operator on visible layer Z GiKijp;
ij

o exact spectrum of target distribution is reproduced from infrared scale upwards

o RBM is an ultraviolet regulator

Scalar field Restricted Boltzmann Machine as an ultraviolet regulator, Aarts, Lucini, Park, in preparation



What if Nh < Nv 7
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What if RBM mass u? is wrongly chosen?

analytical result: u? acts as an ultraviolet regulator
consider spectrum of induced quadratic operator on visible layer Z@sz%‘
ij

exact spectrum of target distribution is reproduced from infrared scale upwards

RBM is an ultraviolet regulator

Scalar field Restricted Boltzmann Machine as an ultraviolet regulator, Aarts, Lucini, Park, in preparation



What it RBM

example: 1D scalar LFT
with N;, = 10 nodes

exact spectrum (k)
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Application to MNIST data

o standard data set to test ML methods

o 28x28 images of digits 6

o 748x784 correlation matrix

4_
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o inverse spectrum
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o infrared safe
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o ultraviolet divergent
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MNIST with fixed RBM mass

Nv —_ Nh — 748
fixed RBM mass u? = 100
spectrum regulated

infrared modes learned
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O

O

O

MNIST with dynamic RBM mass

Nv=Nh= 748

dynamical RBM mass p?
is learned as well

spectrum regulated

ultraviolet cut-off u? increases

to include more modes
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MNIST with N, < N,

what is the effect of

Q
s
X

Q.

&

O

o
=

oT0)
=
O
=

o
=

spectrum?

225

(b) Np

= 784

(a) Np

removal of

)]
)
ye)
O
S
i)
X
9
>
(40)
-
.
>

affects

generative power

(f) N = 4



Interacting scalar field RBM

Gaussian RBMs can learn Gaussian distributions
in LFT language: need to include interactions
various ways to do so, depending on properties of target distribution

QFT-ML approach: add local potential terms on nodes, e.g. ¢4 terms

Quantum field-theoretic machine learning, Bachtis, Aarts, Lucini
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

standard RBM approach: use binary hidden layer h, = *1



O

Scalar-Bernoulli RBM: hidden binary nodes

induced distribution p(¢) = %exp (—S¢(¢) + Z Z cnqun) with ¢, = Z OiWiq — Mg

a n=l1

generates all-to-all interactions of all powers of ¢

at leading order in W same kinetic term as in Gaussian case

example of quartic term Z Z (Piwia) (PjWja) (PrWha) (Prwi1a)
(taking M, = 0 for simplicity) a ikl
highly non-local, very different from local field theories, analysis in preparation



summary

o applications of ML to many problems in fundamental physics

o three examples:
o phase classification and physics interpretation
o ensemble generation with normalising flow
o Restricted Boltzmann Machines as toy models to understand ML



Outlook

o inspiring connection between problems in lattice field theory and machine learning

o new solutions to old problems/old solutions to new problems

o insights work both ways: plenty of opportunities for impact in LFT and ML



Outline

O

O

O

O

classification of phases of matter: order-disorder transition

generating ensembles: normalising flow

guantum field-theoretical machine learning

inverse renormalisation group



Renormalisation Group (RG)

o standard renormalisation group: coarse-graining,

blocking transformation, integrating out degrees of freedom, ...

Ising model: Kadanoff block spin

' ! C L
majority rule ? T 7 Qi '=L/2

reduction of degrees of freedom

O O O O

study critical scaling

O ]
|
o |
J L
o 10
o IC
I 4 l

o nhot invertible: semi-group

44



Renormalisation group

o generates flow in parameter space

o due to repeated blocking: run out of degrees of freedom

o need to start with large system to apply RG step multiple times

o large systems, close to a transition, L

suffer from critical slowing down !—-—-—-.—I !-;-—-—c-)-i

! || i
| |
l o 4 o!

L'=L/2

8



Inverse renormalisation group

what if we could invert the RG?
add degrees of freedom, fill in the ‘details’
inverse flow in parameter space

can be applied arbitrary number of steps

O O O O O

evade critical slowing down

Lo

for Ising model: Inverse Monte Carlo Renormalization Group
Transformations for Critical Phenomena, D. Ron,
R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)




Inverse renormalisation group in quantum field theory, Bachtis, Aarts and Lucini
Phys. Rev. Lett. 128 (2022) 081603 [2107.00466 [hep-lat]]

How to devise an inverse transformation?

= new degrees of freedom should be introduced
= |earn a set of transformations (transposed convolutions) to invert a standard RG step

= minimise difference between original and constructed configuration

Compare




Inverse renormalisation group

Transposed convolutions

Input

Transformations
local transformation

apply inverse transformations iteratively

evade critical slowing down

) Output
generate flow in parameter space g

invariance at critical point
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y/v 1.735(5)  1.738(5) 1.741(5) 1.742(5) 1.742(5) 1.744(5) 1.744(5) 1.745(5) 1.745(5) 1.746(5)
Blv 0.132(2) 0.130(2) 0.128(2)  0.128(2) 0.128(2) 0.127(2) 0.127(2)  0.126(2) 0.126(2)  0.126(2)




Application to @* scalar field theory

O

start with lattice of size 322 and apply IRG steps repeatedly

32% - 64 - 128% - 256 - 5127
IRG flow towards critical point
extract critical exponents

y/v and /v from comparison
between two volumes

constructed a large (512%) lattice
very close to criticality

without critical slowing down
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