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Introduction

o past six years or so have seen a rapid rise of applications of machine learning (ML)
in fundamental science, particle physics, theoretical physics

o of course ML has been around for quite some time, especially in experimental 
particle physics

o nevertheless, there is an exponential increase in activity



Introduction

o find title learning on the 
iNSPIRE data base

o exponential growth!



ML in lattice field theory

explored in all aspects of LFT:

o configurations – generating ensembles, tuning algorithms

o observables – correlators, thermodynamics, …

o analysis – fitting, phase classification, ill-posed inverse problems, …

o more generally: which method to use, why does it (not) work, understand ML

Applications of machine learning to lattice quantum field theory
SNOWMASS paper, Boyda, Aarts, Lucini et al, arXiv:2202.05838 [hep-lat]



Outline

§ two-page introduction to supervised ML

o classification: order-disorder transition  (by now classic application)

o generating ensembles: normalising flow (popular application)

o quantum field-theoretical machine learning (new conceptual ideas to explore) 

§ biased towards own work and interests in lattice field theory



One-slide introduction to supervised ML 

o attempt to fit a function or probability distribution to describe lots of data

o can be an actual function (regression) or a classification boundary (dog vs cat)

o functional form is not known: use a “universal approximator”, such as neural network

o linear combinations with weights and biases + nonlinear “activation” functions

o many, many, many internal parameters, determine these using training data

o generalise, make predictions for unseen cases, generate new instances, …



Neural networks, deep learning

• input layer – hidden layers – output layer

• many degrees of freedom (“neurons’’) 
associated with sites of network

• weights 𝑤!" (connections) and biases 𝑏! (on-site) are tunable parameters

• learning: parameters are adjusted by minimising some cost or loss function

• NN should then encode some probability distribution and generate/classify/generalise
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Outline

o classification of phases of matter: order-disorder transition

o generating ensembles: normalising flow

o quantum field-theoretical machine learning



Classification of phases of matter

o matter can exist in different phases
o prototype: 2d Ising model -> ordered/disordered or cold/hot phases
o task: determine phase a system is in, determine critical coupling or temperature

Ordered -- ? -- Disordered

1350 cites



Phase classification: (by now) standard procedure

o use your favourite architecture, e.g. Convolutional Neural Network

• input: train on sets of configurations away from the transition
• output: assign probability to be in ordered or disordered phase
o standard supervised classification problem
o apply to unseen configurations and predict



What can we add?

o give a physical interpretation to neural network (NN) prediction
o interpret output from a NN as an observable in a statistical system
• input: configurations, distributed according to Boltzmann weight
• output: observable, “order parameter” in statistical system
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Extending machine learning classification capabilities with histogram reweighting, 
Bachtis, Aarts, Lucini, Phys. Rev. E 102 (2020) 033303 [2004.14341 [cond-mat.stat-mech]]



Output of NN as physical observable

o once you accept this: opens up possibility to use “standard” numerical/statistical methods
histogram reweighting: extrapolation to other parameter values

o starting from computation at given 𝛽&: extrapolate to other 𝛽 values 

< 𝑃 > 𝛽 =
∑𝑃!𝑒# $#$" %!

∑𝑒# $#$" %!

ü filled diamond at 𝛽&
ü line obtained by reweighting in 𝛽
ü open diamonds are independent cross checks 

2d Ising model



Critical behaviour from NN observables

• determine 𝐿 dependent susceptibility 𝛿𝑃 and its maximum at 𝛽'(𝐿)

extract critical properties from 
NN observables only 

2d Ising model



𝜑! scalar field theory 

• reweight in mass parameter, 𝜇(

• identify regions where phase is clear
• transfer learning: retrain NN using 𝜇( < −1.0 and  𝜇( > −0.9
• repeat finite-size scaling analysis as in 2d Ising model

symmetry-broken symmetric

• same universality class as 2d Ising model
• critical mass in agreement with results 

obtained with standard methods 
(Binder cumulant, susceptibility)Mapping distinct phase transitions to a neural network, Bachtis, Aarts, Lucini

Phys. Rev. E 102 (2020) 053306 [2007.00355 [cond-mat.stat-mech]]



Outline

o classification of phases of matter: order-disorder transition

o generating ensembles: normalising flow

o quantum field-theoretical machine learning



Generating configurations in LFT
o well-known problems in MCMC: critical slowing down, topological freezing
o generate configurations starting from “simple” distribution
o perform change of variables to reach desired distribution: invertible map
o simple example

Box-Mueller transformation: from uniform distribution to Gaussian distribution

normalising flow, trivialising map

o many applications in e.g. image generation in ML literature
o applications to lattice field theory (since 2019)

Flow-based generative models for Markov chain Monte Carlo in lattice field theory
Albergo, Kanwar, Shanahan, Phys. Rev. D 100 (2019) 3, 034515 [1904.12072 [hep-lat]]



Generating configurations: normalising flow

o from Gaussian distribution 𝑟 𝑧 to desired distribution 𝑝 𝜙
o generated by neural network, sequence of invertible (matrix + shift) transformations
o trained by minimising distance between learned and target distribution
o due to checkerboard structure: Jacobian of learned transformation is trivial
o “provably exact”: insert Metropolis-Hastings step at the end 

Introduction to Normalizing Flows for Lattice Field Theory, Albergo et al, arXiv:2101.08176 [hep-lat]
Aspects of scaling and scalability for flow-based sampling of lattice QCD, Abbott et al, 2211.07541 [hep-lat]



Generating configurations: normalising flow

o target distribution: 𝑝)*+,-) 𝜙 , learned distribution:     𝑝.-*+/-0 𝜙

o compare distributions e.g. with Kullback-Leibler divergence

𝐷(𝑝.-*+/-0|| 𝑝)*+,-))  = ∫𝐷𝜙 𝑝.-*+/-0 𝜙 ln 1#$%&'$( 2
1)%&*$) 2

≥ 0

o philosophy: much easier to sample from learned distribution via trained network



Normalising flow: applications to QCD
challenges:
o higher dimensions: not 2d (images), but 3d and 4d spacetime
o gauge symmetry: large internal symmetry, do not want to sample redundant dof
o construct gauge equivariant coupling layers (commute with gauge transformations)
o gauge invariant input distribution à gauge invariant output distribution 

first application in 4d QCD
with 𝑁3 = 2 on a  44 lattice

o scalability?

Sampling QCD field configurations with gauge-equivariant flow models, 
Abbott et al, PoS LATTICE2022 (2023) 036 [2208.03832 [hep-lat]] 



Gauge equivariance

deep connections to recent developments in ML
o coordinate independence 
o local reference frame
o Convolutional Neural Nets on Riemannian manifolds
applications in 
§ vision
§ medical imaging
§ climate patterns

Coordinate Independent Convolutional Networks--Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds, 
Weiler, Forré, Verlinde, Welling, arXiv preprint arXiv:2106.06020 [cs.LG]
Gauge equivariant convolutional networks and the icosahedral CNN, Cohen, Weiler, Kicanaoglu, Welling
International conference on Machine learning, 1321-1330 [arXiv:1902.04615v3 [cs.LG]

see posters by 
Daniel Schuh and 
Matteo Favoni



Normalising flow

o many variants being developed

o see talks at recent ECT* workshop

o https://indico.ectstar.eu/event/171/

If you are interested in organising a workshop 
at ECT* in 2024: please click this link
deadline September 20, 2023 

https://indico.ectstar.eu/event/171/
https://www.ectstar.eu/activities/workshops/call-for-2024-project-proposals/


Outline

o classification of phases of matter: order-disorder transition

o generating ensembles: normalising flow

o quantum field-theoretical machine learning



Can we understand ML using QFT methods?

neural network: 
o system with many fluctuating degrees of freedom
o connected via links
o represents probability distribution

§ can we use stat mech/QFT methods?
§ yes, already studied since 1980s 

take a fresh look using our favourite tools

Quantum field-theoretic machine learning, Bachtis, Aarts, Lucini
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]



Restricted Boltzmann Machine

simplest example of a NN: two-layer generative network

o visible layer: to encode probability distribution

o hidden layer: to encode correlations

o restricted: no connections within a layer

o degrees of freedom on two layers can be spins, say ±1, or continuous, or mixed

o weights connect the nodes, biases on the nodes

N

i= i= i=21

a= a= a=1 2 h

Nv

Aarts, Lucini, Park, in preparation



RBM: generative network

o energy-based method

o probability distribution



Scalar field RBM

o use field theory approach: start with “free fields”: Gaussian-Gaussian RBM

o distribution:

o energy (or action):

o no interaction between nodes in a layer, bilinear coupling between layers

o only quadratic terms, add interactions later, e.g.      terms

N

i= i= i=21

a= a= a=1 2 h

Nv



o induced distribution on visible layer

o scalar field with kinetic (all-to-all) term

and source

o unusual Gaussian LFT: what is the weight matrix 𝑊 and bias 𝜂?

Gaussian scalar field RBM

N

i= i= i=21

a= a= a=1 2 h

Nv



o RBM should reproduce target distribution, determine 

o learn from data or directly from known distribution

o simplest case: target theory = LFT of free scalar field in 1 or 2d 

o kinetic matrix is LFT inverse propagator, 𝐾2 ≈ 𝑝( +𝑚(

o can solve for weight matrix 

RBM probability function



(infinitely) many solutions for weight matrix:        is symmetric and positive-definite

1. Cholesky decomposition : triangular

2. diagonalisation : 

3. non-uniqueness: internal symmetry 

in practice
o all equally valid, realisation depends on initialisation
o non-observable degeneracy due to internal symmetry on hidden layer

Exact results for 𝑁" = 𝑁#



o analytical solution usually not available
o train RBM numerically by maximising log-likelihood function

questions we would like to understand, for NNs in general and here:

o what determines the optimal architecture? number of hidden nodes?
o what is the role of internal parameters, e.g. RBM mass parameter 𝜇(?
o what if these parameters are chosen incorrectly? 
o can one make generic statements?

use LFT insights, apply to MNIST data 

RBM training/architecture

N

i= i= i=21

a= a= a=1 2 h

Nv



o analytical result: number of hidden nodes acts as an ultraviolet regulator

o consider spectrum of induced quadratic operator on visible layer

o exact spectrum of target distribution is reproduced from infrared scale upwards

o RBM is an ultraviolet regulator

What if 𝑁" < 𝑁# ?

Scalar field Restricted Boltzmann Machine as an ultraviolet regulator, Aarts, Lucini, Park, in preparation



• example: 1D scalar LFT
with 𝑁5 = 10 nodes

• exact spectrum (𝜅) 

• reproduced by RBM (𝜆)
from smallest eigenvalue 
upwards

• higher modes are moved 
to cut-off scale (𝜇()

What if 𝑁" < 𝑁# ? 



o analytical result: 𝜇( acts as an ultraviolet regulator

o consider spectrum of induced quadratic operator on visible layer

o exact spectrum of target distribution is reproduced from infrared scale upwards

o RBM is an ultraviolet regulator

What if RBM mass 𝜇$ is wrongly chosen?

Scalar field Restricted Boltzmann Machine as an ultraviolet regulator, Aarts, Lucini, Park, in preparation



• example: 1D scalar LFT
with 𝑁! = 10 nodes

• exact spectrum (𝜅) 

• reproduced by RBM (𝜆) from 
smallest eigenvalue upwards

• higher modes are suppressed 
at cut-off scale (𝜇")

What if RBM mass 𝜇$ is wrongly chosen?



o standard data set to test ML methods

o 28x28 images of digits

o 748x784 correlation matrix

o inverse spectrum

o infrared safe

o ultraviolet divergent

Application to MNIST data
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o 𝑁5 = 𝑁6 = 748

o fixed RBM mass 𝜇( = 100

o spectrum regulated

o infrared modes learned
correctly

MNIST with fixed RBM mass
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o 𝑁5 = 𝑁6 = 748

o dynamical RBM mass 𝜇(

is learned as well

o spectrum regulated

o ultraviolet cut-off 𝜇( increases 
to include more modes

MNIST with dynamic RBM mass
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what is the effect of
including incomplete 
spectrum?

removal of 
ultraviolet modes 
affects 
generative power

MNIST with 𝑁" ≤ 𝑁#



o Gaussian RBMs can learn Gaussian distributions
o in LFT language: need to include interactions
o various ways to do so, depending on properties of target distribution

o QFT-ML approach: add local potential terms on nodes, e.g.      terms 

o standard RBM approach: use binary hidden layer

Interacting scalar field RBM

Quantum field-theoretic machine learning, Bachtis, Aarts, Lucini
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]



o induced distribution with

o generates all-to-all interactions of all powers of  

o at leading order in    s: same kinetic term as in Gaussian case 

o example of quartic term 
(taking for simplicity)

o highly non-local, very different from local field theories, analysis in preparation

Scalar-Bernoulli RBM: hidden binary nodes



Summary

o applications of ML to many problems in fundamental physics

o three examples:
o phase classification and physics interpretation
o ensemble generation with normalising flow
o Restricted Boltzmann Machines as toy models to understand ML  



Outlook

o inspiring connection between problems in lattice field theory and machine learning

o new solutions to old problems/old solutions to new problems

o insights work both ways: plenty of opportunities for impact in LFT and ML



Outline

o classification of phases of matter: order-disorder transition

o generating ensembles: normalising flow

o quantum field-theoretical machine learning

o inverse renormalisation group



Renormalisation Group (RG)

o standard renormalisation group: coarse-graining, 
blocking transformation, integrating out degrees of freedom, …

o Ising model: Kadanoff block spin
o majority rule
o reduction of degrees of freedom
o study critical scaling 

o not invertible: semi-group

44



Renormalisation group

o generates flow in parameter space
o due to repeated blocking: run out of degrees of freedom
o need to start with large system to apply RG step multiple times
o large systems, close to a transition,

suffer from critical slowing down



Inverse renormalisation group

o what if we could invert the RG? 
o add degrees of freedom, fill in the ‘details’
o inverse flow in parameter space
o can be applied arbitrary number of steps
o evade critical slowing down

for Ising model: Inverse Monte Carlo Renormalization Group 
Transformations for Critical Phenomena, D. Ron, 
R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)



How to devise an inverse transformation?

§ new degrees of freedom should be introduced
§ learn a set of transformations (transposed convolutions) to invert a standard RG step
§ minimise difference between original and constructed configuration

Inverse renormalisation group in quantum field theory, Bachtis, Aarts and Lucini
Phys. Rev. Lett. 128 (2022) 081603 [2107.00466 [hep-lat]] 



Inverse renormalisation group

§ local transformation
§ apply inverse transformations iteratively
§ evade critical slowing down
§ generate flow in parameter space
§ invariance at critical point



Application to 𝜑!
scalar field theory 

§ repeated steps
§ locking in on critical point



Application to 𝜑! scalar field theory 

o start with lattice of size 32( and apply IRG steps repeatedly
o 32( → 64( → 128( → 256( → 512(

o IRG flow towards critical point 
o extract critical exponents
𝛾/𝜐 and 𝛽/𝜐 from comparison 
between two volumes

o constructed a large (512() lattice 
very close to criticality 
without critical slowing down
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