Searching for new physics with isotope-shift spectroscopy of trapped ions

Diana P. L. Aude Craik dcraik@phys.ethz.ch dacraik@mit.edu

Yb⁺ experiment @ Vuletić group, MIT (with J. Hur, I. Counts, E. Knyazev, L. Caldwell, S. Pandey, C. Leung, A. Kawasaki, H. Jeon, W. Jhe, V. Vuletić) Ca⁺ experiment @ Home group, ETHZ (with R. Matt, J. Flannery, L. Huber, J. Home) Theory collaborators: W. Nazarewicz, P. G. Reinhard, A. Geddes, J. Berengut

See J. C. Berengut et al, PRL **120** 091801 (2018) J. C. Berengut et al, Phys Rev Research **2** <u>043444</u> (2020)

Φ could be a "relaxion"...

Graham, Kaplan, Rajendran, PRL **115**, 22180 (2015)

More SM extensions we can probe Debierre et al, Phys. Rev. A **106** 062801 (2022)

> Animation from https://www.quantamagazine.org/ higgs-boson-mass-explained-in-new-theory-20150527/

Probing the interaction by measuring isotope shifts

Isotope A Isotope A'

Probing the interaction by measuring isotope shifts

Isotope A Isotope A'

$$\delta v^{AA'}$$
 = standard model shift + boson shift

field shift

Due to change in spatial distribution of the nuclear charge

Probing the interaction by measuring isotope shifts

Isotope A Isotope A'

 $\delta v^{AA'}$ = standard model shift + boson shift

mass shift + field shift

Due to change in kinetic energy, from change in nuclear mass Due to change in spatial distribution of the nuclear charge

King plot

King plot

King plot

↑ Isotope shift on transition 2 DE ()CD BC **King Plot** AB W. H. King, JOSA 53, 638 (1963) Isotope shift on transition 1

How sensitive is this method?

J. C. Berengut et al, PRL 120 (2018)

The measurement

Zoom in by a factor of 1 million...

Zoom in by a factor of 1 million...

1 million...

Deviation from linearity with **3**^o confidence

This work: Counts et al, PRL **125** 123002 (2020) See also: Solaro et al, PRL 125 123003 (2020) - Ca⁺

15

So, is this a new dark matter boson?!

So, is this a new dark matter boson?!

Not necessarily. There are higher-order standard model contributions that can also give rise to King-plot nonlinearity.

So, is this a new dark matter boson?!

Not necessarily. There are higher-order standard model contributions that can also give rise to King-plot nonlinearity.

The measurement

467-411 King Plot

467-411 King Plot

See Hur*, <u>Aude Craik</u>*, Counts* et al, PRL **128**, 163201 (2022)

467-411 King Plot

41σ nonlinearity!

See Hur*, <u>Aude Craik</u>*, Counts* et al, PRL **128**, 163201 (2022)

27

See Hur*, <u>Aude Craik</u>*, Counts* et al, PRL **128**, 163201 (2022) 29

See Hur*, <u>Aude Craik</u>*, Counts* et al, PRL **128**, 163201 (2022) 30

Higher order SM contributions

Bounds on new physics

Isotope shift spectroscopy as a very precise nuclear physics probe

Right figure from <u>https://physics.aps.org/articles/v14/58</u> Left figure from https://www.insidescience.org/news/tiny-neutron-skins-secrets-neutron-stars

Nuclear and astrophysics directions

Nuclear and astrophysics directions

Vuletić Ion Lab, MIT (Yb⁺ work)

Eugene Knyazev

Joonseok Hur

Diana P L Aude Craik

Vladan Vuletić

Alumni: Ian Counts Honggi Jeon Calvin Leung Swadha Pandey Luke Caldwell **Collaborators:** Witold Nazarewicz Paul-Gerhard Reinhard Julian Berengut Amy Geddes

Amy Geddes Akio Kawasaki Wonho Jhe

울

II)

IS spectroscopy at ETHZ – Ca⁺

- Low SM backgound. No nonlinearity up to 20Hz precision (Solaro et al, PRL 125, 2020)
- Can push bounds 1-2 orders of magnitude in intermediate mass range by measuring at 10mHz (Manovitz et al, PRL 123, 203001, 2019).

Nuclear physics puzzles

Figure credit: Ronald Fernando Garcia Ruiz

IS spectroscopy at ETHZ - Calcium

Encoded Qubit Alive (EQuAl) setup at TIQI ETHZ

IS spectroscopy on co-trapped Ca⁺ isotopes

$$\psi(T) = \frac{1}{\sqrt{2}} (|e_A g_B\rangle + e^{i2\pi\Delta v_{IS}T} |g_A e_B\rangle)$$

IS spectroscopy on co-trapped Ca⁺ isotopes

Measuring the Ca40-44 IS

Measuring Ca40-Ca44 IS

$${}^{2}S_{1/2} = {}^{+1/2}_{-1/2} g_{s}m_{s}\mu_{B}B$$

Measuring Ca40-Ca44 IS

EQuAl team - TIQI group, ETH Zürich

Luca Huber

Gillen Beck

Roland Matt

Jeremy Flannery

Diana P L Aude Craik Jonathan Home

TIQI group retreat 2022, Bettmeralp

Questions?

