

Precise determination of the fine structure constant and test of QED

Pierre Cladé

More than 25 years of work

PhD students (since 2000) and postdoc:

- C. Debavelaere
- C. Carrez
- L. Morel
- Z. Yao
- S. Bade
- M. Andia

- R. Jannin
- C. Courvoisier
- R. Bouchendira
- M. Cadoret
- P. Cladé
- R. Battesti

Permanent staff (2023):

- Pierre Cladé
- Saïda Guellati-Khelifa
- François Biraben (emeritus)

PhD and post-doc positions available pierre.clade@lkb.upmc.fr

$$a_e = rac{g_e-2}{2}$$
, with $g_e = rac{ ext{Larmor freq.}}{ ext{cyclotron freq.}}$

- Measurement: <u>a_e(exp) = 0.00115965218059(13)</u> (group of G. Gabrielse, Phys. Rev. Lett. 130, 071801, 2023), improved by a factor of 2.
- QED calculation (Laporta PRB 772 232 (2017); Aoyama et. al. Atoms 7 28 (2019); ...)

$$a_e \left(\mathsf{QED} \right) = \sum_{n=1}^{\infty} A^{(2n)} \left(\frac{\alpha}{2\pi} \right)^n + \sum_{n=1}^{\infty} A^{(2n)}_{\mu,\tau} \left(\frac{m_e}{m_{\mu}}, \frac{m_e}{m_{\tau}} \right) \left(\frac{\alpha}{2\pi} \right)^n$$

- Calculation of the A^{10} term : 12672 Feynman diagrams.
- Other contributions

$$a_e$$
 (theo) = a_e (QED) + a_e (Hadron) + a_e (Weak)

<u>⊿</u>∕LKB_

One loop contribution of dark photon :

$$a_{l} = \frac{\alpha}{2\pi} \epsilon^{2} F_{V}(m_{Z_{d}}/m_{l})$$

$$F_V(x) = \int_0^z dz \frac{1}{(1-z)^2 + x^2 z}$$

G. F. Giudice et al. JHEP 11, 113 (2012)

 $\begin{aligned} \delta a_{\mu} &= a_{\mu}(\exp) - a_{\mu}(\text{theo}) \\ &= 2.51(0.59) \cdot 10^{-9} \ (4.2\sigma) \end{aligned}$

T. Aoyama *et al*, Physics Report **887**, p1-66, (2020) B. Abi et al. (Muon g-2 Collaboration) Phys. Rev. Lett. 126, 141801 (2021)

$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \simeq \frac{1}{137.0}$	Recoil velocity		
Hydrogen spectroscopy: $hcR_{\infty} = \frac{1}{2}m_{\rm e}c^2\alpha^2$ $\alpha^2 = \frac{2R_{\infty}}{c}\frac{h}{m_{\rm e}} = \frac{2R_{\infty}}{c}\frac{A_{\rm r}({\rm X})}{A_{\rm r}({\rm e})}\frac{h}{m_{\rm X}}$	$ \begin{array}{c c} b\rangle \\ E = h\nu \\ p = \pm \hbar k \\ a\rangle 1 \end{array} \xrightarrow{m} \nu_1 \longrightarrow \\ v_r = \hbar k/m $		
$\begin{tabular}{ c c c c } \hline Rydberg \mbox{ constant } & R_{\infty} & 2\times 10^{-12} \\ \hline Relative \mbox{ mass of } e & A_{\rm r}(e) & 3.0\times 10^{-11} \\ \hline Relative \mbox{ mass of atoms } & A_{\rm r}({\rm X}) & \simeq 6\times 10^{-11} \\ \hline \end{tabular}$	Rubidium atoms : $v_r = 6 \mathrm{mm}\mathrm{s}^{-1}$		
Precision limited by $\frac{h}{m_{\rm X}}$ (or $m_{\rm X}$ in the new SI)			
Our goal is to measure v_r			

- Differential velocity sensor : atom interferometer
- Transfer a large number N of photon momenta : Bloch oscillation technique

Interferometer based on counterpropagating Raman transitions

Raman transition

_∧_LKB

- No spontaneous emission
 - \rightarrow Coherent two level system
- Doppler sensitive $(\delta \sim k_R v)$ with $k_R = k_1 + k_2$

Interferometer based on counterpropagating Raman transitions

Raman transition

_∧/LKB

- No spontaneous emission
 - \rightarrow Coherent two level system
- Doppler sensitive $(\delta \sim k_R v)$ with $k_R = k_1 + k_2$

Interferometer based on counterpropagating Raman transitions

Raman transition

_∧/LKB

- No spontaneous emission
 - \rightarrow Coherent two level system
- Doppler sensitive (δ ~ k_Rv) with k_R = k₁ + k₂

Phase difference between the two arms Φ In the middle of the interferometer: $\Delta z = 2v_R T_{\text{Ramsey}}$

Phase difference between the two arms Φ In the middle of the interferometer: $\Delta z = 2v_R T_{\text{Ramsey}}$

Atomic phase :

$$\Phi_{\rm at.} = T_{\rm Ramsey} k_R \delta v = \frac{\Delta z \delta v}{\hbar/m}$$

Laser phase = Doppler effect :

$$\phi_{\rm las.} = 2\pi \delta f_R T_{\rm Ramsey}$$

Phase difference between the two arms Φ In the middle of the interferometer: $\Delta z = 2v_R T_{\text{Ramsey}}$

Atomic phase :

$$\Phi_{\mathrm{at.}} = T_{\mathrm{Ramsey}} k_R \delta v = rac{\Delta z \delta v}{\hbar/m}$$

Laser phase = Doppler effect :

$$\phi_{\rm las.} = 2\pi \delta f_R T_{\rm Ramsey}$$

Probability to observe an atom in $|2\rangle$:

$${\mathcal{P}_2} = rac{{1 + cos({\Phi_{{
m at.}}} - {\phi_{{
m las.}}})}}{2}$$

Experimental setup

Magneto-optical trap : 10^8 atoms at $2\,\mu K$

Experimental setup

Data acquisition

- ~ 1 point per second 50 points per spectra (~ 1 minute)
- $T_{\text{Ramsey}} = 20 \text{ ms}$, Number of Bloch Oscillations $N_B = 500$

 $\Phi = T_{\text{Ramsey}} \left(k_R 2 N_B v_r - 2\pi \delta f_R \right)$

- One photon momentum: $\sim 15~\text{kHz} \rightarrow 1000$ photon momenta: $\sim 15~\text{MHz}$
- $\sigma_v = 0.047 Hz \sim 3 \cdot 10^{-6} v_r \sim 20 \text{ nm} \cdot \text{s}^{-1} \rightarrow 3 \cdot 10^{-9} \text{ on } h/m$

Stable and reliable device \Rightarrow Long measurement periods

2023/07/04

____LKB_

Error budget

Source	Correction $[10^{-11}]$	Relative
Source		uncertainty [10 ⁻¹¹]
Gravity gradient	-0.6	0.1
Alignment of the beams	0.5	0.5
Coriolis acceleration		1.2
Frequencies of the lasers		0.3
Wave front curvature	0.6	0.3
Wave front distortion	3.9	1.9
Gouy phase	108.2	5.4
Residual Raman phase shift	2.3	2.3
Index of refraction	0	< 0.1
Internal interaction	0	< 0.1
Light shift (two-photon transition)	-11.0	2.3
Second order Zeeman effect		0.1
Phase shifts in Raman phase lock loop	-39.8	0.6
Global systematic effects	64.2	6.8
Statistical uncertainty		2.4
Relative mass of ⁸⁷ Rb ¹⁶ : 86.909 180 531 0(60)		3.5
Relative mass of the electron 14 : 5.485 799 090 65(16) \cdot 10 ⁻⁴		1.5
Rydberg constant 14 : 10 973 731.568 160(21)m ⁻¹		0.1
Total: $\alpha^{-1} = 137.035999206(11)$		8.1

- Photon (plane wave) : $p = \hbar k = h\nu/c$
- Poynting vector (density of momentum) / density of photons
- $\vec{k}_{eff} = \vec{\nabla}\phi$ (phase of the electric field $E(\vec{r}, t) = A(\vec{r}, t)e^{i\phi(\vec{r})}$).
- Correction to the plane wave model: $k_{\text{eff},z} = k + \delta k$

- Photon (plane wave) : $p = \hbar k = h\nu/c$
- Poynting vector (density of momentum) / density of photons
- $\vec{k}_{eff} = \vec{\nabla}\phi$ (phase of the electric field $E(\vec{r}, t) = A(\vec{r}, t)e^{i\phi(\vec{r})}$).
- Correction to the plane wave model: $k_{\text{eff},z} = k + \delta k$

Arbitrary beam:

$$\delta k_{\mathsf{rel}} = \frac{\delta k}{k} = -\frac{1}{2} \left| \left| \frac{\overrightarrow{\nabla}_{\perp} \phi}{k} \right| \right|^2 + \frac{1}{2k^2} \frac{\Delta_{\perp} A}{A}$$

(Paraxial approximation)

$\mathsf{Effect} \propto \mathrm{Cor}(I, P(I)) \times \mathrm{Cor}(I, k_{\mathrm{eff}}(I))$

- Fluctuations are reduced by letting the beam propagate.
- Monte Carlo simulation.
- Comparison with experiment as a function of the number of atoms

Work in progress : measurement with a BEC

LKB

$$\begin{aligned} \delta a_{\mu} &= a_{\mu}(\exp) - a_{\mu}(\text{theo}) \\ &= 2.51(0.59) \cdot 10^{-9} \ (4.2\sigma) \end{aligned}$$

T. Aoyama *et al*, Physics Report **887**, p1-66, (2020) B. Abi et al. (Muon g-2 Collaboration) Phys. Rev. Lett. 126, 141801 (2021) One loop contribution of dark photon :

$$a_{l} = rac{lpha}{2\pi} \epsilon^{2} F_{V}(m_{Z_{d}}/m_{l})$$
 $F_{V}(x) = \int_{0}^{1} dz rac{2z(1-z)^{2}}{(1-z)^{2}+x^{2}z}$

LKB

$$\begin{split} \delta a_{\mu} &= a_{\mu}(\exp) - a_{\mu}(\text{theo}) \\ &= 2.51(0.59) \cdot 10^{-9} \ (4.2\sigma) \end{split}$$

T. Aoyama *et al*, Physics Report **887**, p1-66, (2020) B. Abi et al. (Muon g-2 Collaboration) Phys. Rev. Lett. 126, 141801 (2021)

Naive scaling
$$\left|\frac{\delta a_e}{\delta a_{\mu}}\right| = \left(\frac{m_e}{m_{\mu}}\right)^2 \sim 2.3 \cdot 10^{-5}$$

 $\delta_{a_e} \sim 5.8 \cdot 10^{-14} (0.05 \text{ppb})$

G. F. Giudice et al. JHEP 11, 113 (2012) F. Terranova et al., PRA 89, 052118 (2014)

Quantum interference with antihydrogen

- Principle of the GBAR project : *H*⁺ trapped in a ion trap. *H* produced by photodetachment (Walz and Hänsch, *Gen. Relat. and Grav.*, **36**, 561 (2004))
- \blacksquare Measurement base on time of flight : $\simeq 1 \times 10^{-2}$ for 1000 events.
- Improvement based on quantum interferences antihydrogen (Crépin et. al., Phys. Rev. A, 042119, 2019: Rousselle et. al., Phys. Rev. D. 76 209 2022)
- Quantum reflection of atoms (Casimir-Polder potential)

More than 25 years of work

PhD students (since 2000) and postdoc:

- C. Debavelaere
- C. Carrez
- L. Morel
- Z. Yao
- S. Bade
- M. Andia

- R. Jannin
- C. Courvoisier
- R. Bouchendira
- M. Cadoret
- P. Cladé
- R. Battesti

Permanent staff (2023):

- Pierre Cladé
- Saïda Guellati-Khelifa
- François Biraben (emeritus)

PhD and post-doc positions available pierre.clade@lkb.upmc.fr