Measuring the Charge of the Neutron using a Time-Of-Flight Neutron Grating Interferometer

Philipp Heil

Laboratory for High Energy Physics Albert Einstein Center for Fundamental Physics University of Bern

philipp.heil@unibe.ch

4.7.2023

UNIVERSITÄT BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Table of Content

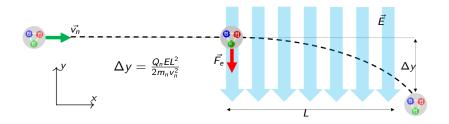
- Introduction, Motivation
- Principle
- Setup
- Alignment
- Measurements
- Summary/Outlook

2

Motivation - Charge of the Neutron

Current value :
$$Q_n = (-0.4 \pm 1.1) \cdot 10^{-21} e^{-1}$$
.

Important consequences for precise tests of fundamental physical laws:

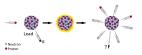

- ullet Even though Q_n is small, charge quantization and neutrality of atoms is under debate.
- Has Q_n the same value for bound and free neutrons?
- ullet Charge conservation prohibits neutron antineutron oscillation if $Q_n
 eq 0$.

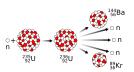
Here: Application of a cold neutron beam deflection measurement.

- ◆ □ ▶ ◆ @ ▶ ◆ 볼 ▶ · 볼| 돌 | 영 Q @

¹Baumann et al., Phys. Rev. D37,3017(1988)

Introduction - Measuring the Charge of the Neutron


- Goal: Improvement by two orders of magnitude.
- Task: Deflection measurement on the picometer scale!²

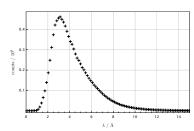

Introduction - Production of Neutrons

spallation

fission

4 D > 4 D > 4 E > 4 E > E E 9 Q @

Introduction - Energy Range of the Neutrons

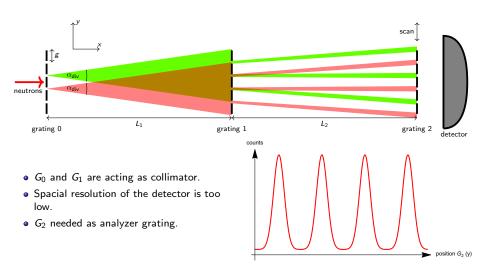

	produced neutrons	cold neutrons	ultra cold neutrons
temperature [K]	1000	10	10-8
energy [eV]	> 1	10^{-3}	10^{-7}
velocity $[m s^{-1}]$	2200	800	5
wavelength [Å]	2	5	800

- Cooling the neutrons to the desired energy.
- Very Low energy for storage experiments (UCN).
- Low energy for interference experiments (CN).

Introduction - Energy Range of the Neutrons

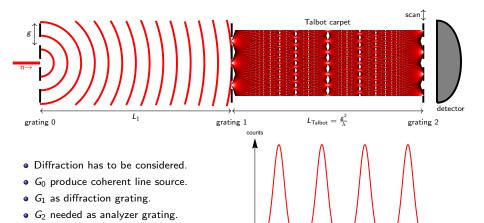
	produced neutrons	cold neutrons	ultra cold neutrons
temperature [K]	1000	10	10-8
energy [eV]	> 1	10^{-3}	10^{-7}
velocity $[m s^{-1}]$	2200	800	5
wavelength [Å]	2	5	800

- Cooling the neutrons to the desired energy.
- Very Low energy for storage experiments (UCN).
- Low energy for interference experiments (CN).

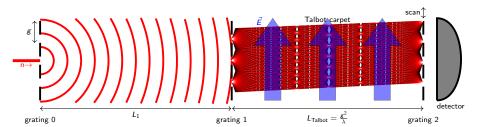


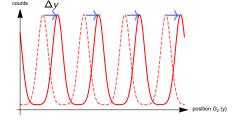
Spectrum of the cold neutron beam at SINQ, PSI.

Table of Content


- Introduction, Motivation
- 2 Principle
- Setup
- Alignment
- Measurements
- Summary/Outlook

Principle - Geometric Case

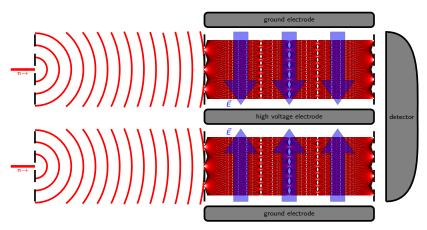

Principle - Diffraction Case



position G2 (y)

Principle - Charge Measurement

- Apply an electric field \vec{E} .
- If $Q_n \neq 0$ this induces a shift Δy of the pattern.
- $Q_n = \frac{2m_n v_n^2 \Delta y}{EL^2}$

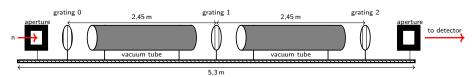


一(中)(即)(意)(意)

troduction, Motivation Principle Setup Alignment Measurements Summary/Outlook.

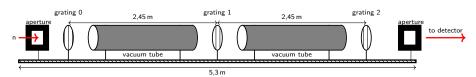
OOOO OOO OOO OOOOOOOOO OOO

Principle - Two Beam Method

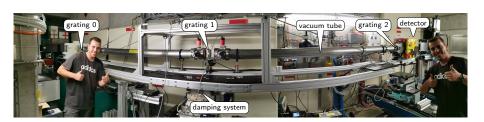

- Separate the neutron beam into two parts.
- Applying an electric field with inverted polarity using a central high voltage electrode.
- Taking the difference between left and right spot in order to compensate for global drifts.

(□ > (□ > (Ē > (Ē > (Ē) Æ] = ()

Table of Content

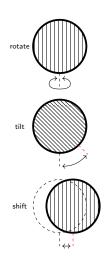

- Introduction, Motivation
- Principle
- Setup
- Alignment
- Measurements
- Summary/Outlook

Setup - Overview

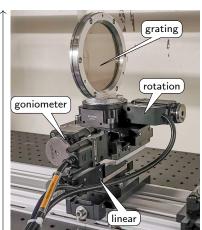


Scheme of the interferometer setup as it was used at the Paul Scherrer Institute (August 2022)

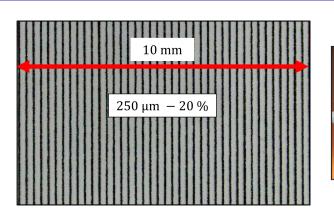
Setup - Overview

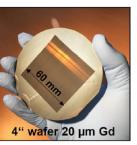


Scheme of the interferometer setup as it was used at the Paul Scherrer Institute (August 2022)

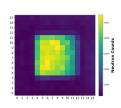


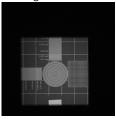
Setup - Stages

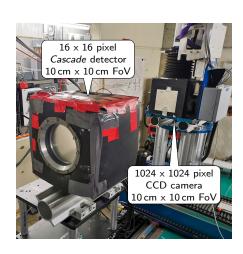

Adjusting rotation, tilt angle, and translation remotely.



Setup - Gratings




- Gd coated sapphire wavers (20 μm and 30 μm layer thickness).
- Engraved with a laser.
- Grating constant from $g = 25 \,\mu\text{m}$ to $g = 250 \,\mu\text{m}$.


Setup - Detectors

High statistics

High resolution

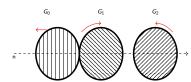
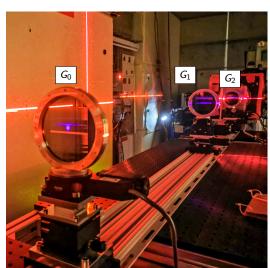
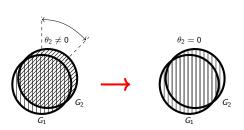


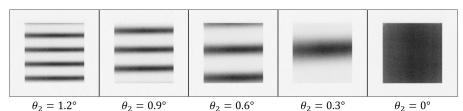

Table of Content


- Introduction, Motivation
- Principle
- Setup
- 4 Alignment
- Measurements
- Summary/Outlook

Alignment - Optical

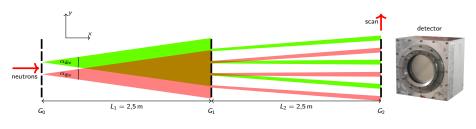
Alignment with laser




Alignment - Neutron

Alignment with Neutrons

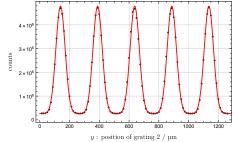
Pictures taken with CCD camera.


Scanning the tilt angle θ_2 between Grating 1 and Grating 2.

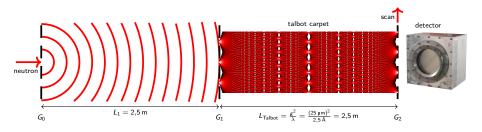
Philipp Heil (LHEP) Neutron Grating Interferometer 4.7.2023 19

Table of Content

- Introduction, Motivation
- Principle
- Setup
- Alignment
- Measurements
- Summary/Outlook

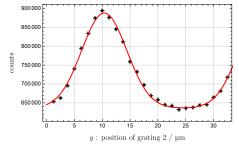

Measurements - Visibility - Ballistic Case

$$G_0 = G_1 = G_2 = 250 \, \mu \text{m}, 20 \, \% \, \, ext{dc, } 30 \, \mu \text{m} \, \, ext{Gd}$$


Visibility of modulation:

$$\eta = \frac{N_{\text{max}} - N_{\text{min}}}{N_{\text{max}} + N_{\text{min}}} = 89.9 \,\%$$

- (ロ) (個) (注) (注) (注) (利) (P)


Measurements - Visibility - Diffraction Case

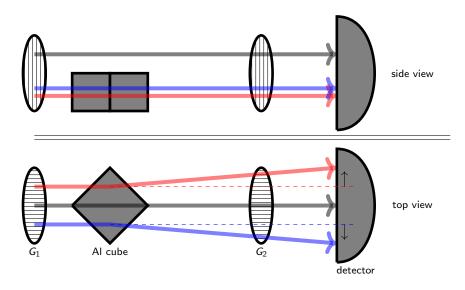
$$G_0 = G_1 = G_2 = 25 \, \mu \text{m}, 20 \, \% \, \, \text{dc}, \, 30 \, \mu \text{m} \, \, \text{Gd}$$

Visibility of modulation:

$$\eta = rac{ extstyle extstyle N_{ extstyle min}}{ extstyle N_{ extstyle max} + extstyle N_{ extstyle min}} = 16.5\,\%$$

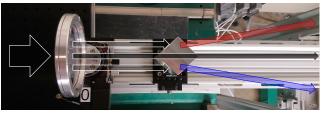
Introduction, Motivation Principle Setup Alignment Measurements Summary/Outlook
00000 0000 000 000 000000000 0000

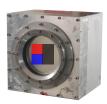
Measurements - Probing Beam Deflections

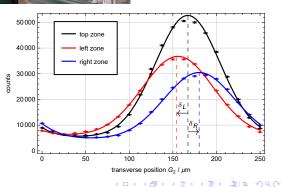


23

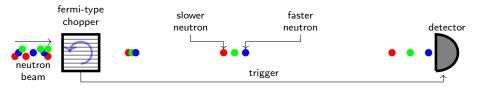
Philipp Heil (LHEP) Neutron Grating Interferometer 4.7.2023

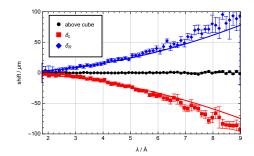

Measurements - Probing Beam Deflections

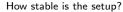



Measurements 00000000000

Measurements - Probing Beam Deflections

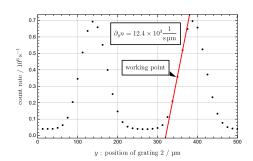



- Performing a scan with G_2 .
- Left zone shifted by $\delta_I \approx -10 \, \mu \text{m}$.
- Right zone shifted by $\delta_R \approx 10 \, \mu \text{m}$.


Measurements - Probing Beam Deflections

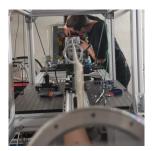
- Time-of-Flight measurement
- Wavelength dependent deflections δ_L , δ_R

Measurements - Stability



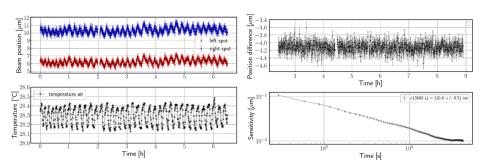
Measurements - Stability

Long time measurement at the most sensitive point (working point).

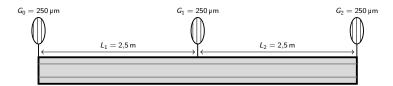

- Drive G_2 to the working point.
- Calibration count rate \leftrightarrow position.

Measurements - Stability

Two beam method



troduction, Motivation Principle Setup Alignment **Measurements Summary/Outlook**00000 0000 000 **0000000000** 0000


Measurements - Stability

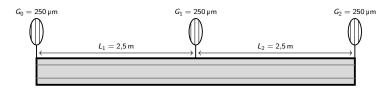
- Periodical temperature fluctuations observed at the beamline.
- Changes in temperature observable in neutron data.
- Taking the difference of the left and right spot in order to get rid of this systematic effect.

Measurements - Sensitivity

Sensitivity of charge measurement:

$$\sigma(Q_n) = \frac{4\pi\hbar^2 G_2}{\eta m_n E L_2^2 \lambda^2 \sqrt{N}}$$

• η : visibility


• N: number of neutron counts

• m_n : mass of the neutron

• E: electric field

• λ : wavelength

Measurements - Sensitivity

Sensitivity of charge measurement:

$$\sigma(Q_n) = \frac{4\pi\hbar^2 G_2}{\eta m_n E L_2^2 \lambda^2 \sqrt{N}}$$

• η : visibility

• N: number of neutron counts

4.7.2023

• m_n : mass of the neutron

• E: electric field

• λ : wavelength

 $\eta=89.9$ %, $\lambda=4.2$ Å, neutron rate = 317 kHz If an electric field of $E=100\,\mathrm{kV\,cm^{-1}}$ would be applied (Electrodes under construction):

$$\sigma(Q_n)=8.1\cdot 10^{-20}e/\sqrt{\mathsf{day}}$$

Baumann: (-0,4 ± 1,1) ⋅ 10⁻²¹e

Table of Content

- Introduction, Motivation
- Principle
- Setup
- Alignment
- Measurements
- Summary/Outlook

Summary

- ullet Several setups characterized so far \checkmark
- Developed efficient alignment technique √
- Two beam method tested √
- ullet Effect of external temperature fluctuations analyzed \checkmark
- Beam deflections observed (Proof of principle with AI prism) √

troduction, Motivation Principle Setup Alignment Measurements Summary/Outlook
0000 0000 000 000 0000000000 00 €0

Outlook

- Next beam time in November at the ILL in Grenoble.
- Electrodes will be installed for the first time.
- First measurement of the charge of the neutron (not competitive).

Outlook

- Next beam time in November at the ILL in Grenoble.
- Electrodes will be installed for the first time.
- First measurement of the charge of the neutron (not competitive).

Ultimate goal: Measuring at the *ESS* in Lundt, Schweden. Estimation:

- Chopped, high intensity neutron beam.
- Measurement time of 100 days.
- Length of the setup of 10 m.
- Electric field of 100 kV cm⁻¹

$$\sigma(Q_n) pprox 10^{-23} e$$

ntroduction, Motivation Principle Setup Alignment Measurements Summary/Outlook 20000 0000 000 000 0000000000 000

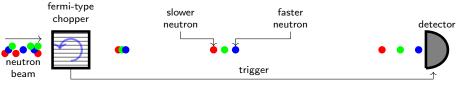
DUNIVERSITÄT BERN

AEC

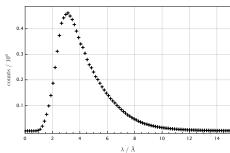
ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

European Research Council

Established by the European Commission

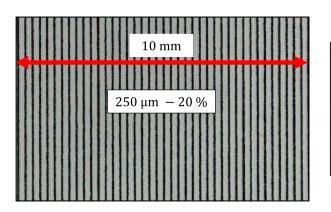


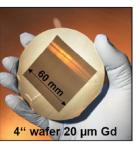
Appendix


 ${\sf Appendix}$

36

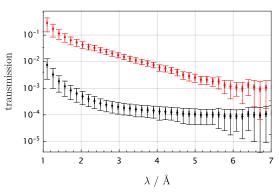
Principle - Time of Flight




- Spectrum of the neutron beam in general non monochromatic.
- Using a fermi-type chopper to get time (wavelength) information.
- Maxwell distributed energy of the neutrons.

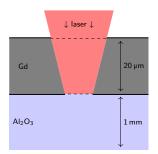
Time-of-flight spectrum of the cold neutron beam at SINQ, PSI.

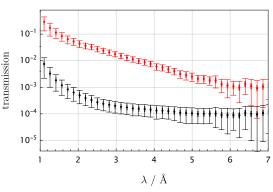
Absorption Gratings - Properties



- Gd coated sapphire wavers (25 μm and 30 μm layer thickness).
- Engraved with a laser.
- Grating constant from $g = 25 \,\mu\text{m}$ to $g = 250 \,\mu\text{m}$.

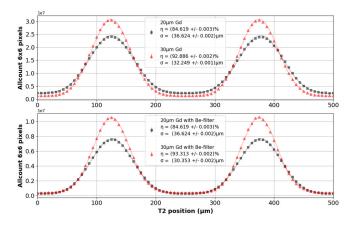
Absorption Gratings - Transmission Measurement


- Time-of-flight transmission measurements.
- Thicker layers are favorable
- Quality of engraving has to be considered.

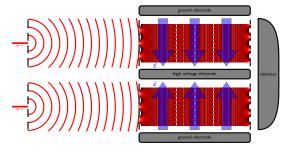


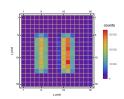
Time-of-flight transmission measurement for $20 \, \mu m$ and $30 \, \mu m$ Gd layer coating.

Absorption Gratings - Transmission Measurement


- Time-of-flight transmission measurements.
- Thicker layers are favorable
- Quality of engraving has to be considered.

Time-of-flight transmission measurement for $20~\mu m$ and $30~\mu m$ Gd layer coating.

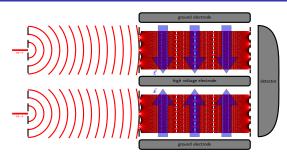

Absorption Gratings - Comparison Layer Thickness

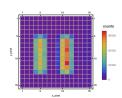


• Transversal scan of G_2 with $g=250\,\mu\mathrm{m}$ grating period and a duty cycle of 20 %.

40

Setup - Two Beam Method





Measured neutrons with the 16x16 pixel detector.

- Separate the neutron beam into two parts.
- Applying an electric field with inverted polarity using a central high voltage electrode.
- Taking the difference between left and right spot compensates for global drifts.

Setup - Two Beam Method

Measured neutrons with the 16x16 pixel detector.

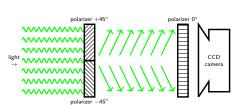
- Separate the neutron beam into two parts.
- Applying an electric field with inverted polarity using a central high voltage electrode.
- Taking the difference between left and right spot compensates for global drifts.

Characterization - Stability

Further investigations in our labs.

Testing different directions of flow:

Characterization - Stability


Further investigations in our labs.

Testing different directions of flow:

Optical setup with polarizer foils to sense

