Measuring the Charge of the Neutron using a Time-Of-Flight Neutron Grating Interferometer

Philipp Heil

Laboratory for High Energy Physics Albert Einstein Center for Fundamental Physics University of Bern

philipp.heil@unibe.ch

4.7.2023

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Introduction, Motivation

Principle

3 Setup

Alignment

Measurements

Summary/Outlook

Motivation - Charge of the Neutron

Current value : $Q_n = (-0.4 \pm 1.1) \cdot 10^{-21} e^{-1}$.

Important consequences for precise tests of fundamental physical laws:

- Even though Q_n is small, charge quantization and neutrality of atoms is under debate.
- Has Q_n the same value for bound and free neutrons?
- Charge conservation prohibits neutron antineutron oscillation if $Q_n \neq 0$.

Here: Application of a cold neutron beam deflection measurement.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

¹Baumann et al., Phys. Rev. D37,3017(1988)

Introduction - Measuring the Charge of the Neutron

- Goal: Improvement by two orders of magnitude.
- Task: Deflection measurement on the picometer scale!²

E SQA

イロト イヨト イヨト

²Piegsa, Phys. Rev. C 98, 045503 (2018)

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
	00000	00000	000	000000000000	0000

Introduction - Production of Neutrons

fission

spallation

1.64

· Pretter

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
0000●	00000	00000	000	000000000000	0000

Introduction - Energy Range of the Neutrons

	produced neutrons	cold neutrons	ultra cold neutrons
temperature [K]	1000	10	10 ⁻⁸
energy [eV]	> 1	10 ⁻³	10 ⁻⁷
velocity [m s ⁻¹]	2200	800	5
wavelength [Å]	2	5	800

- Cooling the neutrons to the desired energy.
- Very Low energy for storage experiments (UCN).
- Low energy for interference experiments (CN).

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
0000●	00000	00000	000	000000000000	0000

Introduction - Energy Range of the Neutrons

	produced neutrons	cold neutrons	ultra cold neutrons
temperature [K]	1000	10	10 ⁻⁸
energy [eV]	> 1	10^{-3}	10^{-7}
velocity [m s ⁻¹]	2200	800	5
wavelength [Å]	2	5	800

- Cooling the neutrons to the desired energy.
- Very Low energy for storage experiments (UCN).
- Low energy for interference experiments (CN).

Spectrum of the cold neutron beam at *SINQ*, *PSI*.

イロト イヨト イヨト イヨト

Introduction, Motivation

Principle

3 Setup

Alignment

Measurements

Summary/Outlook

Philipp Heil (LHEP)

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
	0●000	00000	000	000000000000	0000

Principle - Geometric Case

Principle - Diffraction Case

イロト イヨト イヨト イヨト

Principle - Charge Measurement

- Apply an electric field \vec{E} .
- If $Q_n \neq 0$ this induces a shift Δy of the pattern.

•
$$Q_n = \frac{2m_n v_n^2 \Delta y}{EL^2}$$

< □ > < □ > < □ > < □ > < □ >

Principle - Two Beam Method

- Separate the neutron beam into two parts.
- Applying an electric field with inverted polarity using a central high voltage electrode.
- Taking the difference between left and right spot in order to compensate for global drifts.

イロト イヨト イヨト イヨト

Introduction, Motivation

2 Principle

Summary/Outlook

Scheme of the interferometer setup as it was used at the Paul Scherrer Institute (August 2022)

Scheme of the interferometer setup as it was used at the Paul Scherrer Institute (August 2022)

Adjusting rotation, tilt angle, and translation remotely.

Setup 00000

Alignment 000 Neasurements

Summary/Outlook 0000

Setup - Gratings

イロト イヨト イヨト イヨト

- $\bullet\,$ Gd coated sapphire wavers (20 μm and 30 μm layer thickness).
- Engraved with a laser.
- Grating constant from $g = 25 \,\mu\text{m}$ to $g = 250 \,\mu\text{m}$.

= 990

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
	00000	0000●	000	000000000000	0000
Setup - Detectors	5				

High statistics

High resolution

Introduction, Motivation

Principle

3 Setup

Summary/Outlook

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
	00000	00000	0●0	000000000000	0000

Alignment - Optical

Alignment with laser

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
00000	00000	00000	00●	000000000000	0000

Alignment - Neutron

Alignment with Neutrons

Pictures taken with CCD camera.

Scanning the tilt angle θ_2 between Grating 1 and Grating 2.

Philipp Heil (LHEP)

三日 のへの

Introduction, Motivation

Principle

3 Setup

Alignment

Summary/Outlook

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
00000	00000	00000	000	00000000000	0000

Measurements - Visibility - Ballistic Case

 Introduction, Motivation
 Principle
 Setup
 Alignment
 Measurements
 Summary/Outlook

 00000
 00000
 0000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Measurements - Probing Beam Deflections

Introduction, Motivation

rinciple

مر 000 Alignmen 000 Measurements 000000000000 Summary/Outlook

Measurements - Probing Beam Deflections

50 000 top zone 40 000 left zone right zone 30 000 counts 20 000 10000 0 0 50 100 150 200 250 transverse position G2 / µm

- Performing a scan with G_2 .
- Left zone shifted by $\delta_L \approx -10 \,\mu{\rm m}.$
- Right zone shifted by $\delta_R \approx 10 \ \mu m.$

Measurements - Probing Beam Deflections

- Time-of-Flight measurement
- Wavelength dependent deflections δ_L , δ_R

イロト イヨト イヨト イヨト

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
	00000	00000	000	0000000●0000	0000
Measurements -	Stability				

How stable is the setup?

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
00000	00000	00000	000	00000000●000	0000
Measurements -	Stability				

Long time measurement at the most sensitive point (working point).

rking point. ate \leftrightarrow position. $\frac{1}{100} \frac{0.6}{0.4}$

0.0

100

200

y : position of grating 2 / µm

イロト イヨト イヨト イヨ

300

0.7

- Drive G_2 to the working point.
- \bullet Calibration count rate \leftrightarrow position.

٠

٠

400

٠

٠

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
	00000	00000	000	00000000000000	0000
Measurements -	Stability				

Two beam method

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
00000	00000	00000	000	000000000000000	0000
	~ · · ···				

- Periodical temperature fluctuations observed at the beamline.
- Changes in temperature observable in neutron data.
- Taking the difference of the left and right spot in order to get rid of this systematic effect.

< □ > < □ > < □ > < □ > < □ >

Measurements - Sensitivity

Sensitivity of charge measurement:

$$\sigma(Q_n) = \frac{4\pi\hbar^2 G_2}{\eta m_n E L_2^2 \lambda^2 \sqrt{N}}$$

- η : visibility
- N: number of neutron counts
- *m_n*: mass of the neutron
- E: electric field
- λ : wavelength

Baumann: $(-0, 4 \pm 1, 1) \cdot 10^{-21} e$

Philipp Heil (LHEP)

.7.2023 31

Sensitivity of charge measurement:

$$\sigma(Q_n) = \frac{4\pi\hbar^2 G_2}{\eta m_n E L_2^2 \lambda^2 \sqrt{N}}$$

- η : visibility
- N: number of neutron counts
- m_n: mass of the neutron
- E: electric field
- λ : wavelength

 $\eta = 89.9$ %, $\lambda = 4.2$ Å, neutron rate = 317 kHz If an electric field of E = 100 kV cm⁻¹ would be applied (Electrodes under construction):

$$\sigma(\mathit{Q_n})=8.1\cdot 10^{-20} e/\sqrt{ ext{day}}$$

```
Baumann: (-0,4 \pm 1,1) \cdot 10^{-21}e
```

Philipp Heil (LHEP)

4.7.2023 31

Introduction, Motivation

Principle

3 Setup

Alignment

Measurements

Summary/Outlook

Introduction, Motivatio 00000	rinciple :	Setup , 00000	Alignment 000	Measurements 000000000000	Summary/Outlook 0●00

Summary

- $\bullet\,$ Several setups characterized so far $\checkmark\,$
- \bullet Developed efficient alignment technique \checkmark
- $\bullet\,$ Two beam method tested $\checkmark\,$
- $\bullet\,$ Effect of external temperature fluctuations analyzed $\checkmark\,$
- Beam deflections observed (Proof of principle with AI prism) \checkmark

イロン イ団 とく ヨン イヨン

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
00000	00000	00000	000	000000000000	00●0
Outlook					

- Next beam time in November at the *ILL* in Grenoble.
- Electrodes will be installed for the first time.
- First measurement of the charge of the neutron (not competitive).

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
00000	00000	00000	000	000000000000	00●0
Outlook					

- Next beam time in November at the ILL in Grenoble.
- Electrodes will be installed for the first time.
- First measurement of the charge of the neutron (not competitive).

Ultimate goal: Measuring at the *ESS* in Lundt, Schweden. Estimation:

- Chopped, high intensity neutron beam.
- Measurement time of 100 days.
- Length of the setup of 10 m.
- Electric field of 100 kV cm^{-1}

$$\sigma(Q_n) pprox 10^{-23} e$$

イロト イヨト イヨト イヨト 油

= nar

Introduction, Motivation	Principle	Setup	Alignment	Measurements	Summary/Outlook
	00000	00000	000	000000000000	000●
LABORATORIUM FÜR HOCHENERGIEFHYSIK LHEPP UNIVERSITÄT BERN	buiversität BERN AEC	IN CENTER	European Re Examination of the L	Search Council Umpana Commission	

Appendix

Appendix

Principle - Time of Flight

- Spectrum of the neutron beam in general non monochromatic.
- Using a fermi-type chopper to get time (wavelength) information.
- Maxwell distributed energy of the neutrons.

Time-of-flight spectrum of the cold neutron beam at *SINQ*, *PSI*.

Absorption Gratings - Properties

イロト イ団ト イヨト イヨト

- Gd coated sapphire wavers (25 µm and 30 µm layer thickness).
- Engraved with a laser.
- Grating constant from $g = 25 \,\mu\text{m}$ to $g = 250 \,\mu\text{m}$.

Absorption Gratings - Transmission Measurement

- Time-of-flight transmission measurements.
- Thicker layers are favorable
- Quality of engraving has to be considered.

Time-of-flight transmission measurement for 20 μm and 30 μm Gd layer coating.

Absorption Gratings - Transmission Measurement

- Time-of-flight transmission measurements.
- Thicker layers are favorable
- Quality of engraving has to be considered.

Philipp Heil (LHEP)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Absorption Gratings - Comparison Layer Thickness

• Transversal scan of G_2 with $g = 250 \,\mu\text{m}$ grating period and a duty cycle of 20 %.

Setup - Two Beam Method

- Separate the neutron beam into two parts.
- Applying an electric field with inverted polarity using a central high voltage electrode.
- Taking the difference between left and right spot compensates for global drifts.

イロト イ団ト イヨト イヨト

Setup - Two Beam Method

Measured neutrons with the 16×16 pixel detector.

イロト イヨト イヨト イヨト

- Separate the neutron beam into two parts.
- Applying an electric field with inverted polarity using a central high voltage electrode.
- Taking the difference between left and right spot compensates for global drifts.

Characterization - Stability

Further investigations in our labs.

Testing different directions of flow:

イロン イ団 とく ヨン イヨン

Characterization - Stability

Further investigations in our labs.

Testing different directions of flow:

Optical setup with polarizer foils to sense deformations:

