

Testing weak equivalence with LEMING $\ensuremath{\mathfrak{L}}$

Damian Goeldi SNPQTF 2023

The Standard Model of particle physics

ETH zürich

Muonium

Testing weak equivalence with second-generation antileptons

ETH zürich

LEptons in Muonium INteracting with Gravity ${\sf LEMING}$

ETH zürich

Muonium creation See Jesse Zhang's poster

- Existing thermal beams not suitable
 - Large energy spread
 - Broad angular distribution
 - *M* production efficiency strongly dependant on diffusion time (implantation depths)

Novel superfluid helium (SFHe) muonium beam

M formation in SFHe

- Small impurity
- $\Rightarrow \ \, {\sf Ballistic} \ \, {\sf propagation}$
 - Fast diffusion inside liquid
 - Positive chemical potential
 - High-speed
 surface ejection

LEMING

Test beam detector setup

- Stop μ^+ in thin SFHe layer
- *M* ejected upwards
- Detect decay $e^+ \wedge e^-$

First observation of muonium atoms emitted from superfluid helium

Creating a horizontal muonium beam from superfluid helium Let SFHe climb up vertical trenches on upstream side of first interferometer grating

Interferometer

Developing precision stages to achieve required alignment See Robert Waddy's poster

Interferometer contrast

Requirements

- Contrast $C = \frac{A}{A_0} \approx 0.3$
- Not overly sensitive on misalignment
- \Rightarrow Fix first two gratings, put third on high-precision stage

Sensitivity

Trade-off between spatial resolution and statistics

$$\Delta g \approx \frac{d}{2\pi T^2 C \sqrt{N_0 \epsilon \eta^3 \exp\left(-\frac{t_0 + T}{\tau}\right)}}$$

- Grating period $d \approx 100 \,\mathrm{nm}$
- Interaction time $T \approx 7 \, \mu s$ to $8 \, \mu s$
- Contrast $C \approx 0.3$

ETH zürich

- Atoms from source $N_0 \approx 1 \times 10^4 \, {
 m s}^{-1} \times t_{
 m measure}$
- Loss factor $\eta = 0.3$, $\epsilon = 0.5$, $t_0 < \frac{\tau}{2}$
- Need high total detection efficiency $\epsilon \approx 0.5$

Detection

Michel e^+ tracker upgrade

- High-resolution tracker instead of scintillators
- E.g. silicon strips

Atomic e^- detection

See Paul Wegmann's Poster

Atomic e^- detector

- High background from μ^+ decaying on gratings, walls, and support
- High-resolution tracker most likely not enough
- Can try to detect atomic e^- in coincidence with Michel e^+
- $E_{e^{-}} < 1 \, {\rm keV}$
- HV acceleration in SFHe not possible
- Detection efficiency directly influences sensitivity
- Fast high-efficiency low-threshold cryogenic
 - e^- detector needed

SNPQTF 2023 12/17

Figure: $T = 0.85 \,\mathrm{K}$

Scintillator threshold too high for atomic e^- detection

ETH zürich LEMING

Perovskites

Promising alternative scintillators

And now for something completely different

Superconducting nanowire single-photon detectors (SNSPD)

High-efficiency low-threshold cryogenic detector

- Designed for γ detection in quantum optics
- *e*[−] detection demonstrated (DOI:10.1063/1.3506692 🗷)

\~/

0.3 0.6 0.9

x'(um)

0.9

(un) 0.6 , 0.3

- Potentially problematic charge build-up
- Preparing test of commercial SNSPD

Putting it all together

Collaboration

LEMING: A next generation atomic physics and gravity experiment using muonium (M) atoms

A. Antognini, P. Crivelli, I. Cortinovis¹, M. Heiss, K. Kirch^{*}, D. Goeldi, <u>A. Soter</u>, D. Taquu, R. Waddy[†] P. Wegmann[†] J. Zhang[†] Institute for Particle Physics and Astrophysics, ETIR Zurich, 8093 Zurich, Switzerland

> M. Bartkowiak, A. Knecht, J. Nuber[‡], A. Papa,[¶] R. Scheuermann Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland

F. Wauters Johannes Gutenberg University of Mainz, 55122 Mainz, Germany

ETH zürich

