
LEMING

Testing weak equivalence
with LEMING��SSS
Damian Goeldi
SNPQTF 2023



The Standard Model of particle physics

Gravity
We ‘know’

• atoms (p , n, e−)
→ 99 % of mass from

strong interaction

We don’t know
• antimatter
• 2nd and 3rd

generation
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Muonium
Testing weak equivalence with second-generation antileptons

Regular matter
mic drop

µ+e− → M

Figure: Wikimedia Commons, Neil deGrasse Tyson

2nd generation leptonic antimatter
mic drop

LEMING SNPQTF 2023 2/17



LEptons in Muonium INteracting with Gravity
LEMING
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Muonium creation
See Jesse Zhang’s poster

Existing thermal beams
not suitable

• Large energy spread
• Broad angular

distribution
• M production efficiency

strongly dependant on
diffusion time
(implantation depths)
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Novel superfluid helium (SFHe) muonium beam

M formation in SFHe

• Small impurity
⇒ Ballistic propagation
• Fast diffusion

inside liquid
• Positive chemical

potential
• High-speed

surface ejection

Test beam detector setup

• Stop µ+ in thin SFHe layer
• M ejected upwards
• Detect decay e+ ∧ e−
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First observation of muonium atoms emitted from superfluid helium

Velocity ≈ 2.1 km s−1 Conversion efficiency ≈ 0.2

LEMING SNPQTF 2023 6/17



Creating a horizontal muonium beam from superfluid helium
Let SFHe climb up vertical trenches on upstream side of first interferometer grating
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Interferometer
Developing precision stages to achieve required alignment See Robert Waddy’s poster
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Interferometer contrast

Requirements

• Contrast C = A
A0

≈ 0.3

• Not overly sensitive on misalignment
⇒ Fix first two gratings, put third on

high-precision stage
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Sensitivity

Trade-off between spatial resolution and statistics

∆g ≈ d

2πT 2C

√
N0εη3 exp

(
− t0+T

τ

)
• Grating period d ≈ 100 nm
• Interaction time T ≈ 7 µs to 8 µs
• Contrast C ≈ 0.3
• Atoms from source N0 ≈ 1 × 104 s−1 × tmeasure

• Loss factor η = 0.3, ε = 0.5, t0 < τ
2

• Need high total detection efficiency ε ≈ 0.5
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Detection

Michel e+ tracker upgrade

• High-resolution tracker instead of scintillators
• E.g. silicon strips
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Atomic e− detection
See Paul Wegmann’s Poster

Atomic e− detector

• High background from µ+ decaying on
gratings, walls, and support

• High-resolution tracker most likely not enough
• Can try to detect atomic e− in coincidence

with Michel e+

• E
e− < 1 keV

• HV acceleration in SFHe not possible
• Detection efficiency directly influences

sensitivity
• Fast high-efficiency low-threshold cryogenic

e− detector needed
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Can we just use a regular scintillator-SiPM combo?
Single γ detection: X (DOI:10.1088/1748-0221/17/06/P06024 � ) e− detection: ×
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Perovskites
Promising alternative scintillators

CsPbBr3 nanocrystals at T = 4 K

• 2 keV threshold potentially reachable with HV
acceleration
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And now for something completely different
Superconducting nanowire single-photon detectors (SNSPD)

High-efficiency low-threshold cryogenic detector

• Designed for γ detection in quantum optics
• e− detection demonstrated (DOI:10.1063/1.3506692 � )
• Potentially problematic charge build-up
• Preparing test of commercial SNSPD
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https://doi.org/10.1063/1.3506692


Putting it all together

LEMING SNPQTF 2023 16/17



Collaboration
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