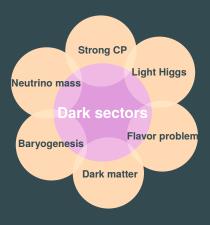
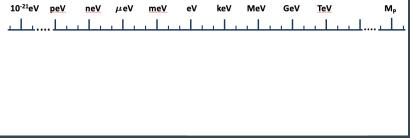


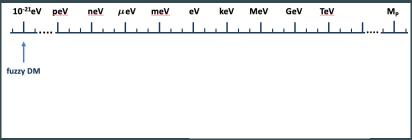
Muonic vs. electronic dark forces

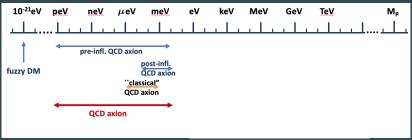
Clara Peset

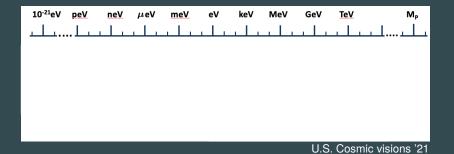
Searching for new physics at the quantum technology frontier, CSF Ascona

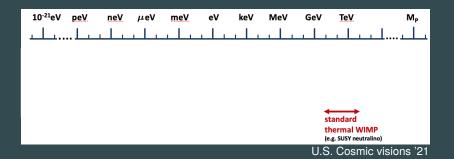

3 July, 2023

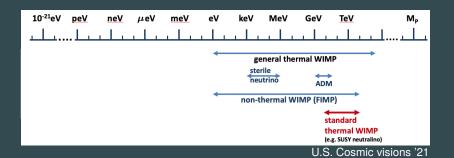

• The Standard Model is great but it cannot be the end of the story:


• The Standard Model is great but it cannot be the end of the story:

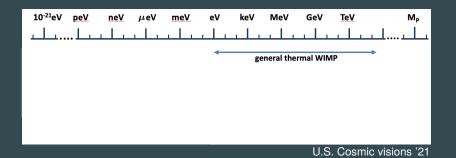

 Solutions to BSM puzzles generically predict dark sectors weakly interacting with the SM


U.S. Cosmic visions '21

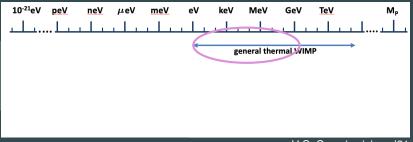

U.S. Cosmic visions '21


U.S. Cosmic visions '21

→ DM production mechanism is a powerful guidance to select well motivated DM candidates



→ DM production mechanism is a powerful guidance to select well motivated DM candidates


→ DM production mechanism is a powerful guidance to select well motivated DM candidates

Thermal DM mass range: $\mathbf{m}_{\phi} \sim$ 1 eV-100 TeV

→ DM production mechanism is a powerful guidance to select well motivated DM candidates

Thermal DM mass range: $m_\phi \sim$ 1 eV-100 TeV

U.S. Cosmic visions '21

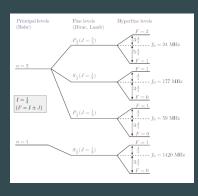
Focus on the sub-GeV window:

Direct detection experiments lose sensitivity and LHC has a limited reach.

→ New experimental strategy required!

Dark sectors and the precision frontier

Direct probes:


- ▶ lead to discovery
- strong dependence on particular DM candidate characteristics
- ► e.g. neutrino facilities (MiniBooNE)

Indirect probes:

- wide searches, less model dependence
- Intensity frontier: produced at fixed target experiments or low energy colliders

Precision frontier: searching for new dark forces via atomic spectroscopy

Precision spectroscopy: hydrogen

Experiment:

extremely accurate

$$E(1S-2S) = 2466\,061\,413\,187\,035(10)\,$$
 Hz

$$E(HFS) = 1420.405751768(1) \text{ MHz}$$

Essen et al. 1971

- Theory:
 - ▶ simple atomic systems: QED corrections up to $\mathcal{O}(\alpha^8 \ln \alpha)$
 - ⇒ Contribution from dark sectors is also small.

Precision spectroscopy: muonic atoms

Experiment:

very accurate

- \blacktriangleright μ H: Lamb shift, 2s HFS, 1s HFS??
- μD: Lamb shift, 2s HFS
- \blacktriangleright μ^4 He: Lamb shift
- \blacktriangleright μ^3 He: Lamb shift

see 2305.11679

- Theory:
 - ▶ limited mainly by nuclear structure effects
 - ⇒ Contribution from dark sectors is large.

Precision spectroscopy: muonium a

Experiment:

very accurate

- ▶ 1s HFS: LAMPF '99, MuSEUM?
 - Lamb shift: MuMASS

- Theory:
 - ► limited mainly by measurement of the muon mass (or magnetic moment)

Strategy

Set a 2-sigma bound to incorporate the new physics

$$|\Delta E_{a \to b}^{\rm NP}| \leq |\Delta E_{a \to b}^{\rm exp} - \Delta E_{a \to b}^{\rm the}| \lesssim 2\sigma_{\rm Max}$$

Needs:

- 1. High precision experiments: $\Delta E_{a\rightarrow b}^{\text{exp}}$
- 2. Very precise Standard Model computations: $\Delta E_{a \to b}^{\text{the}}$
- 3. Incorporating the energy levels of the new particle: $\Delta E_{a \rightarrow b}^{\rm NP}$
 - → Effective field theories

Why are EFTs the way to go?

- model independent
- efficient
- systematic (power counting)

EFTs for bound states

Non-relativistic systems fulfill the relation: $m_r \gg |\mathbf{p}| \gg E$

When bounded by QED, $\alpha \sim v$ is the only expansion parameter

Scales in bound state Coulomb interaction

Hard scale: m_r \longrightarrow m_r Soft scale: $|\mathbf{p}|$ \longrightarrow $m_r\alpha$ Ultrasoft scale: E \longrightarrow $m_r\alpha^2$

when hadrons are involved other scales appear: $\Lambda_{\rm QCD}, m_{\pi}, \dots$

Scales are well separated

$$\mathsf{QED}/\,\mathsf{HBChPT} \stackrel{(m_r,m_\pi)}{\Longrightarrow} \,\,\mathsf{NRQED} \stackrel{(m_r\alpha)}{\Longrightarrow} \,\,\mathsf{pNRQED}\,.$$

is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

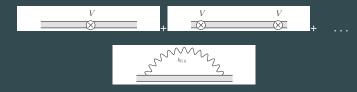
- +corrections to the potential
- +interaction with other low-energy degrees of freedom

is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

- +corrections to the potential
- +interaction with other low-energy degrees of freedom


is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

- +corrections to the potential
- +interaction with other low-energy degrees of freedom

Compute potential insertions in a quantum-mechanical fashion

is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

- +corrections to the potential
- +interaction with other low-energy degrees of freedom

Energy levels:
$$E_{ep} = E_n^C (1 + c_1 \frac{\alpha}{\pi} + \dots + c_4 \left(\frac{\alpha}{\pi}\right)^4 + \dots),$$

$$c_1 \sim c_1 \left[\frac{m_\mu \alpha}{m_e}\right] \text{ pure QED}$$

$$c_n \sim \sum_{j=0}^{\infty} c_n^{(j)} \left(\frac{m_\pi}{m_p}\right)^j; c_n^{(j)} \sim c_n^{(j)} \left[\frac{m_r}{m_\mu}, \frac{m_\mu}{m_\pi}, \dots\right]$$

is a theory for ultrasoft photons

Schrödinger-like formulation

$$\left(i\partial_0 - \frac{\mathbf{p}^2}{2m_r} - V^{(0)}(r)\right)\phi(\mathbf{r}) = 0$$

- +corrections to the potential
- +interaction with other low-energy degrees of freedom

Energy levels:
$$E_{\mu p} = E_n^C (1 + c_1 \frac{\alpha}{\pi} + c_2 \left(\frac{\alpha}{\pi}\right)^2 + \dots),$$

$$c_1 \sim c_1 \left[\frac{m_\mu \alpha}{m_e}\right] \text{ pure QED}$$

$$c_n \sim \sum_{j=0}^{\infty} c_n^{(j)} \left(\frac{m_\pi}{m_p}\right)^j; c_n^{(j)} \sim c_n^{(j)} \left[\frac{m_r}{m_\mu}, \frac{m_\mu}{m_\pi}, \dots\right]$$

EFT for dark forces

- Consider: new spin-1 or spin-0 boson with generic couplings to fermions
- Add as a correction to the pNRQED potential

 \Rightarrow 2 New parameters: g_{NP} and m_{ϕ}

Weakly interacting: $g_{NP}^2 \ll 4\pi\alpha$

Compute the **leading** contribution to $\mathcal{O}(g_{NP}^2)$

EFT for dark forces

- Consider: new spin-1 or spin-0 boson with generic couplings to fermions
- Add as a correction to the pNRQED potential

```
\Rightarrow 2 New parameters: g_{NP} and m_{\phi}
```

Scale hierarchy

Coulomb interaction		

Illustrative example: Heavy pseudoscalar exchange

Tree level:

$$ilde{V} \propto rac{(oldsymbol{\sigma}_1 oldsymbol{q})(oldsymbol{\sigma}_2 oldsymbol{q})}{oldsymbol{q}^2 + m_\phi^2} \overset{m_\phi \gg oldsymbol{q}}{\sim} rac{(oldsymbol{\sigma}_1 oldsymbol{q})(oldsymbol{\sigma}_2 oldsymbol{q})}{m_\phi^2} \Rightarrow V \sim rac{1}{r^5}$$

$$\Rightarrow \delta E$$
 is divergent and $\mathcal{O}(\alpha^5)$

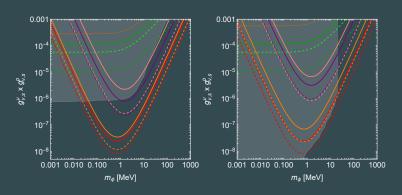
One loop:

$$\tilde{V} \propto \alpha d_v(m_1, m_2, m_\phi)$$

 $\Rightarrow \delta E$ is finite and $\mathcal{O}(\alpha^4)$

→ The leading contribution comes from 1loop exchange!

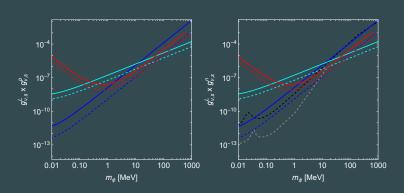
Atomic bounds on dark sectors


Set a 2-sigma bound to incorporate new physics

$$|\Delta E_{a \to b}^{\rm NP}| \leq |\Delta E_{a \to b}^{\rm exp} - \Delta E_{a \to b}^{\rm the}| \lesssim 2\sigma_{\rm Max}$$

Bounds on muonic forces

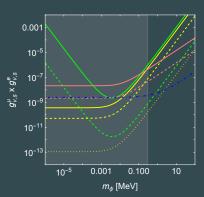
System	Lamb shift		2s Hyperfine	
μH μD $\mu^4 He$ $\mu^3 He$	Exp. (meV) 202.3706(23) 202.8785(34) 1378.521(48) 1258.598(48)	Theo. (meV) 202.420(14) 202.824(21) 1377.54(1.46) 1257.40(5.72)	Exp. (meV) 22.8089(51)	Theo. (meV) 22.812(3)


UPDATE from CP, C. Frugiuele (2107.13512)

Muonic vs electronic forces

System	Lamb	shift	2s Hyperfine		
н	Exp. (MHz)	Theo. (MHz)	Exp. (MHz)	Theo. (MHz)	
	909.8717(32)	909.8742(3)	177.5568343(67)	177.5568382(3)	

UPDATE from CP, C. Frugiuele (2107.13512)

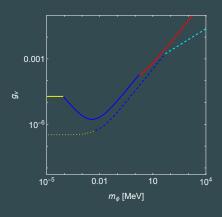

Previous talk by S. Scheidegger

Muonium spin-independent

1S-2S		Lamb shift		hyperfine	
Exp. (MHz) (9.8)	Theo. (MHz)	Exp. (MHz)	Theo. (MHz)	Exp. (MHz)	Theo. (MHz)
	(1.4)	(2.5)	(0.002)	(0.053)	(0.53)

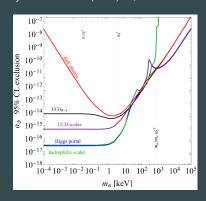
a.8a

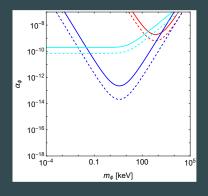
UPDATE from CP, C. Frugiuele (1902.08585)



See G. Janka's talk on next!

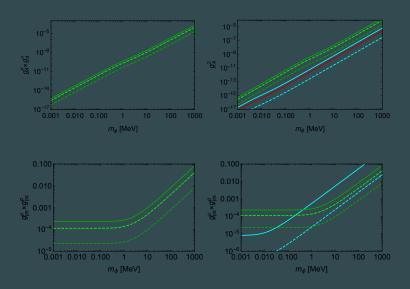
Theory predictions limited by the muon mass uncertainty (Mu-MASS)


Best bounds combined


$$g_v^{\mu} = g_v^e = g_v^p$$

Global fit to all parameters

Phys.Rev.Lett. 130 (2023) 12, 121801



Conclusions and outlook

- Precision physics is an trustworthy and competitive probe for dark sectors
- EFTs are the right tool to describe energy transitions
 - Model independent
 - Systematic
- Muonic atoms:
 - Best atomic probe in the MeV-GeV for spin-independent interactions
 - ► Prospective improvement with IS radii
- Muonium:
 - Best laboratory bounds below keV for spin-independent interactions
 - Prospective improvement with MuMASS and new HFS measurement
- Atomic probes are an independent and robust test of new physics
- Prospective improvement in near future experiments

Thank you!

Bounds: muonic vs electronic forces

