Antiprotonic atoms as a gateway system for BSM investigations

Disclaimer!

(Almost) no experimental results; Certainly no theoretical results;

Instead: suggestions for building potentially interesting systems in which BSM might be probed differently than in existing systems - IOW: speculative a few words on charge exchange processes

starting with ground state atoms:

charge exchange:
$$(A^+e^-) + x^- \rightarrow (A^+x^-)^*_{n} + e^-$$

starting with Rydberg atoms:

for antiprotons:
$$X_n^* + \overline{p} \rightarrow \overline{p} X_n^*, + e^{-1}$$

charge exchange:
$$Ps_n^* + \overline{P} \rightarrow \overline{H}_n^*, + e^-$$

D. Krasnicky, C. Canali, R. Caravita, G. Testera, Phys. Rev. A 94, 022714 (2016)

Michael Doser / CERN Ascona 5/7/23

3/25

An example: AEgIS

(Antimatter Experiment: gravity, Interferometry, Spectroscopy)

Physics goals: measurement of the gravitational interaction between matter and antimatter, \overline{H} spectroscopy, antiprotonic atoms ($\overline{p}p$, $\overline{p}Cs$), Ps, ...

formation

of H*

gratings produce periodic pattern on detector; measure gravity-induced vertical shift of fringes

The 3D tracking an

Pulsed production of \overline{H} in 2018

Pulsed production of |

FIG. 3. Chargecenter-of-mass ener lines simply connec

 $V_{Ps} = 1.2 \ 10^5 \ m/s$

• rate x 1000

pulsed beam

FIC

FIG. 2. Charge exchange cross section divided by n_{Ps}^4 (σ/n_{Ps}^4) as a function of various principal quantum number shown in the legend collapse into a universal plot. For each n_{P_s} the l_{P_s} and m_{P_s} values are sampled from a canonical ensem is a zoom of the region with low k_v values with the fit $\sigma/n_{P_s}^4[cm^2] = \frac{s_1}{k^2} + s_2$ so

$$s_{2} = 1.12 \cdot 10^{-15} cm^{2}.$$

$$10^{-17} \downarrow 1.5 \downarrow 2.5 k_{v}$$
Fice center-lines si
$$V_{\rho_{S}} = 3 \ 10^{4} m/s$$

$$V_{\rho_{S}} = 1.2 \ 10^{5} m/s$$
(for antiprotonic systems: $X_{n}^{*} + \overline{p} \rightarrow \overline{p} X_{n}^{*} + e^{-}$)
$$= 0.05\overline{H} / \text{ cycle}$$

 $V_{PS} = 3 \ 10^4 m / s$

How to improve?

Michael Doser / CERN Ascona 5/7/23 7/25

towards (pulsed formation of) matter-antimatter <u>Rydberg</u> systems ...

antiprotonic Rydberg atoms and ions (with p instead of e-)

 trapped fully stripped HCI's of radio-isotopes
 spectroscopic tests of QED, search for BSM interactions, investigation of novel trapped radioisotopes (nuclear physics, masses, transitions)

antiprotonic molecules (H₂, others ?)

spectroscopic tests of CPT, QED, search for $\overline{p}EDM$

• search for a novel dark matter candidate

antiprotonic Rydberg atoms:

atomic physics processes (Rydberg states, cascades, binding energies, lifetimes)

nuclear physics processes: the deeply bound states' energy levels and lifetimes are affected by strong-interaction effects, which in turn provide the opportunity to study nuclear forces at large distances ("nuclear stratosphere") as well as isotope-related nuclear deformations

<u>consequence</u>: only \overline{p} He metastable states; all other antiprotonic atoms cascade rapidly (O(ns)) Stark mixing via collisions with other atoms \longrightarrow only fluorescence spectroscopy is possible Annihilation from high nS states very likely

AEgIS : heavier "long-lived" antiprotonic Rydberg atoms

- <u>established method</u>: capture in gas/solid; Rydberg atom formation; Stark mixing upon collisions, practically immediate annihilation, from high-n s-states
- <u>proposed method</u>: trapped anion together with 1 antiprotons, photo-detachment of electron 2

Temperature $\overline{p} \sim 10 \text{ K}, X^- \sim 10 \text{ K}, \overline{p}X^{(+)*} \sim 10 \text{ K}$

- \rightarrow fluorescence spectroscopy of Rydberg antiprotonic atoms
- \rightarrow clean cascade (vacuum \rightarrow no Stark mixing)
- \rightarrow longer decay cascade (à la ASACUSA $\overline{p}He$)

a wide swathe of radioisotopes with N,Z close to the mother nucleus can be produced

→ nuclear fragments highly charged, trappable (production of trapped nuclear fragments also works if starting with cations)

AEgIS : an improved $\overline{p}p^*$ (and $\overline{p}d^*$) production method

S. Gerber, D. Comparat, M.Doser, Phys. Rev. A 100, 063418 (2019)

- co-trap H⁻ (or D⁻) and p
 in a Penning trap
- photo-ionize H
- laser-excite H $\rightarrow{2\gamma}$ H*(30)
- charge-exchange reaction: $H^*(30) + \overline{p} \rightarrow \overline{p}p(n) + e^- (n \sim 2000)$
- detect fluorescence & annihilation (π^{\pm} , π^{0})

• or carry out experiments w/ long-lived protonium, e.g. test of the WEP, inertial sensing, ...

M. Doser, Prog. Part. Nucl. Phys, (2022), <u>https://doi.org/10.1016/j.ppnp.2022.103964</u>

HCIs: much larger sensitivity to variation of α and dark matter searches than current clocks

- · Searches for the variation of fundamental constants
- Tests of QED: precision spectroscopy
- fifth force searches: precision measurements of isotope shifts with HCIs to study non-linearity of the King plot

a novel Hydrogen-like hollow atom(ic ion): step-by-step

<u>Rydberg ionic atom</u> (electronic or antiprotonic)
 of a radio-isotopic HCI

 Atomic spectroscopy of trapped ionic systems
 is very sensitive to exotic interactions, benefits from long lifetime of Rydberg atom

Sympathetic cooling prior to charge exchange: ultracold hydrogen-like Rydberg HCI's

antiprotonic molecules:

formation process: as for antiprotonic atoms, i.e. possible co-trapping of \overline{p} and anionic molecules, formation initiated by photo-detachment

but: antiproton rapidly selects one atom, resulting antiprotonic atom cascades rapidly (O(ns))

- Iong lifetimes require Rydberg states

molecules: very numerous very narrow transitions (molecular clock); pEDM (à la RaF)

Observation of a molecular bond between ions and Rydberg atoms, N. Zuber et al., Nature vol. 605, pages 453-456 (2022)

Semiclassical Treatment of High-Lying Electronic States of H₂⁺, T. J. Price and Chris H. Greene, J. Phys. Chem. A 2018, 122, 43, 8565-8575, https:// doi.org/10.1021/acs.jpca.8b07878

<u>antihydrogen molecular ion</u>: H_2^-

 H_2^+ has very narrow transitions, clock @ 10⁻¹⁵ level; how to form antimatter analog?

H₂⁺ and HD⁺: Candidates for a molecular clock, <u>J.-Ph.Karr</u>, J. of Mol. Spectr. 300, 2014, 37-43

 $\sim H_2$

<u>current thinking</u>: $\overline{H} + \overline{H} + \gamma \rightarrow \overline{H_2} + e^+$ H_{nl}-H_{n'l'} Associative ionization M. Zammit et al., Phys. Rev. A 100, 042709 (2019)

(~continuous, extremely low numbers, very low rate)

alternatively:
$$Ps^* + \overline{p} + \overline{p} \xrightarrow{!} \overline{H}_2^{-(*!)} + e^-$$

Three-body recombination

(pulsed, requires ridiculous n(Ps), very low rate? state?)

alternatively:
$$\overline{H}^* + (\overline{p}p)^* \xrightarrow{?} \overline{H}_2^{-(*?)} + e^+$$

Rydberg atom - Rydberg atom associative ionization (but is Penning ionization >>?)[#]

(pulsed, high instantaneous density... rate? state?)

"associative ionisation between two excited states is less than a tenth of the Penning ionisation" - M Cheret et al 1982 J. Phys. B: At. Mol. Phys. 15 3463

alternatively:
$$\overline{H}^* + \overline{p} + \gamma + \gamma \xrightarrow{?} \overline{H}_2^{-(*?)}$$

photo-associative Raman process (STIRAP) to combine atom & ion into a molecular ion $(Li + Cs + \rightarrow (LiCs))$

formation of (other) antiprotonic Rydberg molecules

further (trapped) antiprotonic Rydberg (ionic) molecules

• <u>pulsed formation</u>: co-trapped <u>multiple anion species A^{-}, H^{-} </u> with antiprotons; photo-detach & excite H^{-} to form $\overline{p}p^{*}$ photo-detach & excite A^{-} to form A^{*} (and $\overline{p}A^{(+)*}$)

Rydberg atom interactions between:

for example: $\overline{p}Cs^{(+)*} + \overline{p}p^* \rightarrow \overline{p}\overline{p}p^* + Cs^+$ (???) (Ps^/Ps^+ analog) $\overline{p}Cs^{(+)*} + \overline{p}p^* \rightarrow \overline{p}\overline{p}Cs^{(2+)*} + p$ (?) doubly antiprotonic Cs

 $A^*, \overline{p}A^{(+)*}, \overline{p}p^*$

• <u>3-body formation</u>: combine with nearby cold anion (\overline{p}, X^{-}) $X^{+} X^{+} \overline{p} HCl^{Z+*} \rightarrow (\overline{p} HCl^{Z+*}X^{-})_{molecular ion} + X^{-}$ $(\overline{p}_{83}^{37} Rb)^{36+*}$ $(\overline{p}_{83}^{37} Rb)^{36+*}$ $(\overline{p}_{83}^{7} Rb)$

Antiatomic atoms : a novel dark matter search

<u>sexaquark: uuddss bound state</u> ($m \sim 2m_p < 2m_{\Lambda}$)

https://arxiv.org/abs/1708.08951

not excluded by prior searches for similar states (among them, the H dibaryon) in the GeV region astrophysical bounds can be evaded standard model compatible (uuddss bound state)

in-trap formation of antiprotonic atoms
 charged particle tracking, PID
 detection of spectator p, d

Sensitivity down to 10-9Michael Doser / CERNAscona 5/7/2322/25

Summary & outlook:

Charge exchange pulsed formation of \overline{H}^* between Ps^{*} and \overline{p} is well under control; beam formation under work. Extendable to other Rydberg atoms.

Charge exchange processes between Rydberg systems and single charged particles provide <u>controlled</u> access to unique exotic systems, with which fundamental symmetries, nuclear physics, possible novel interactions or a specific dark matter candidate could be explored (admittedly sometimes at the price of quite some gymnastics...)

What's next? First attempts to valide the pulsed formation of few K antiprotonic atoms (using I^-), trapping of nuclear remnants, characterization of the trapped remnants (2024). Possibly additional anionic systems in 2024/2025 (including anionic molecular precursor states).

THE END

Antiatomic atoms : antineutron production

$p + \overline{p} \rightarrow n + \overline{n}$

Table 3

Selected annihilation reactions energetically compatible with \bar{n} formation within or at the surface of the nucleus.

Reaction	Final state energy [u]	Lifetime of initial state isotope	Lifetime of final state isotope
⁷ Be + $\bar{p} \rightarrow$ " ⁸ Li"	0.0022u	53 d	839 ms
${}^{8}\text{B} + \bar{p} \rightarrow "{}^{9}\text{Be"}$	0.0202u	730 ms	stable
$^{11}C + \bar{p} \rightarrow $ " ¹² B"	0.0049u	20 m	20 ms
13 N + $\bar{p} \rightarrow $ " ¹⁴ C"	0.0103u	10 m	5730 y
24 Na + $\bar{p} \rightarrow $ " ²⁵ Ne"	0.0004u	15h	0.6 s
$^{33}P + \bar{p} \rightarrow "^{34}Si"$	0.0004u	25 d	< 210 ns
40 Ca + $\bar{p} \rightarrow ``^{41}$ K''	0.008u	stable	stable
212 Rn + $\bar{p} \rightarrow $ " ²¹³ At"	0.0051u	24 m	125 ns
216 Th + $\bar{p} \rightarrow $ " ²¹⁷ Ac"	0.009u	27 ms	69 ns

Table 4

Selected annihilation reactions energetically compatible with free antineutron formation.

Reaction	Final state energy [u]	Lifetime of initial state isotope	Lifetime of final state isotope
${}^{8}\text{B} + \bar{p} \rightarrow {}^{8}\text{Be} + \bar{n}$	0.0018u	770 ms	$8 \times 10^{-17} s$
${}^{11}\text{C} + \bar{p} \rightarrow {}^{11}\text{B} + \bar{n}$	0.0007u	20 m	stable
^{15}O + $\bar{p} \rightarrow ^{15}\text{N}$ + \bar{n}	0.0016u	122 s	stable
${}^{18}\text{F} + \bar{p} \rightarrow {}^{18}\text{O} + \bar{n}$	0.0004u	109 m	stable
²² Na + $\bar{p} \rightarrow$ ²² Ne + \bar{n}	0.0015u	2.6 y	stable
211 Rn + $\bar{p} \rightarrow ^{211}$ At + \bar{n}	0.0013u	15 h	7 h
216 Th + $\bar{p} \rightarrow ^{216}$ Ac + \bar{n}	0.0009u	27 ms	0.4 ms

$${}^{A}_{Z}N + \overline{p} \longrightarrow {}^{A}_{Z-1}N + \overline{n}$$

Deep annihilation? QGP?

Selected annihilation reactions energetically compatible with \bar{n} formation within or at the surface of the nucleus.

Reaction	Final state energy [u]	Lifetime of initial state isotope	Lifetime of final state isotope
$^{7}\text{Be} + \bar{p} \rightarrow \text{``}^{8}\text{Li''}$	0.0022u	53 d	839 ms
${}^{8}\text{B}$ + $\bar{p} \rightarrow $ "9Be"	0.0202u	730 ms	stable
$^{11}C + \bar{p} \rightarrow "^{12}B"$	0.0049u	20 m	20 ms
13 N + $\bar{p} \rightarrow $ " ¹⁴ C"	0.0103u	10 m	5730 y
24 Na + $\bar{p} \rightarrow $ " ²⁵ Ne"	0.0004u	15h	0.6 s
$^{33}P + \bar{p} \rightarrow $ " ³⁴ Si"	0.0004u	25 d	< 210 ns
40 Ca + $\bar{p} \rightarrow $ " ⁴¹ K"	0.008u	stable	stable
212 Rn + $\bar{p} \rightarrow $ " ²¹³ At"	0.0051u	24 m	125 ns
216 Th + $\bar{p} \rightarrow $ " ²¹⁷ Ac"	0.009u	27 ms	69 ns

Unbound low energy antineutrons?

Selected annihilation reactions energetically compatible with free antineutron formation.

Table 3

Table 4

Reaction	Final state energy [u]	Lifetime of initial state isotope	Lifetime of final state isotope
${}^{8}\text{B} + \bar{p} \rightarrow {}^{8}\text{Be} + \bar{n}$	0.0018u	770 ms	8 x 10 ⁻¹⁷ s
${}^{11}\text{C} + \bar{p} \rightarrow {}^{11}\text{B} + \bar{n}$	0.0007u	20 m	stable
^{15}O + $\bar{p} \rightarrow ^{15}\text{N}$ + \bar{n}	0.0016u	122 s	stable
${}^{18}\text{F} + \bar{p} \rightarrow {}^{18}\text{O} + \bar{n}$	0.0004u	109 m	stable
²² Na + $\bar{p} \rightarrow$ ²² Ne + \bar{n}	0.0015u	2.6 у	stable
211 Rn + $\bar{p} \rightarrow ^{211}$ At + \bar{n}	0.0013u	15 h	7 h
216 Th + $\bar{p} \rightarrow ^{216}$ Ac + \bar{n}	0.0009u	27 ms	0.4 ms