

Towards Improving the Precision of the Lamb Shift Measurement in Muonium

Gianluca Janka, on behalf of the Mu-MASS collaboration Searching for New Physics at the Quantum Technology Frontier, 03.07.2023

What about 2S_{1/2} and 2P_{1/2}?

- Same energy according to Dirac
- Experimental evidence for a splitting found in early 1930s, nothing conclusive

Fundamental discovery for the development of QED

Lamb Shift of Muonium

- Prediction of M in 1957 by Friedmann, Hughes, Telegdi, detected in 1960
- M is purely leptonic, free from finite size effects
 - → excellent candidate to test bound-state QED
 - \rightarrow any deviation between theory and
 - measurements hint of New Physics

2S Muonium formation: Beamfoil technique

LEM beamline @ PSI

Rejection electrode on/off to show Muonium formation

Lya setup with quenching on/off to show M(2S) formation

Lya setup with quenching on/off to show M(2S) formation

→ M(2S) beam suitable for Lamb shift measurement
 → (GBAR Lya setup is commissioned)

G. Janka et al. Eur. Phys. J. C, 80(9):804, 2020

Lamb Shift of Muonium: Principle

Lamb Shift of Muonium: Microwave

Lamb Shift of Muonium: Principle

15

The journey begins...

Lamb Shift of Hydrogen with Mu-MASS Hydrogen

First tests with proton beam:

 \rightarrow Microwave and Lya-Detection setup works as expected

→Contamination in beam from higher n states (4S seen, 3S expected), needs to be taken into account for Muonium measurements as well

Lamb Shift of Muonium with Mu-MASS

Muonium

LS at 1047.2(2.5) MHz Theory at 1047.498(1) MHz

G. Janka et al., EPJ Web Conf. 262 (2022)

- \rightarrow Limited by statistics
- \rightarrow Agrees well with theory
- \rightarrow Precision not enough to test b-QED, but constrains new physics

B. Ohayon, G. Janka, et al., PRL 128, 011802 (2022)

Looking for New Physics: New Force

Looking for New Physics: SME

Additional energy term for Muonium Lamb Shift:

$$2\pi\delta\nu_{\text{Lamb}} = -\frac{2}{3}(\alpha m_{\text{r}})^{4}(\overset{\circ}{a}_{4}^{\text{NR}} + \overset{\circ}{c}_{4}^{\text{NR}})$$
Lorentz and CPT Only Lorentz

Transition	Coefficient	Constraint	
1 <i>S</i> _{1/2} -2 <i>S</i> _{1/2}	$ \overset{\circ}{a}_{2}^{\mathrm{NR}} $	$< 8 \times 10^{-6} { m GeV^{-1}}$	
	$ \overset{\circ}{c}_{2}^{\mathrm{NR}} $	$< 8 \times 10^{-6} { m GeV^{-1}}$	
	$ \overset{{}_\circ}{a}{}^{ m NR}_4 $	$< 1 \times 10^5 \text{ GeV}^{-3}$	
	$ \overset{\circ}{c}{}^{\mathrm{NR}}_4 $	$< 1 \times 10^5 \text{ GeV}^{-3}$	
Lamb shift	$ \overset{{}_\circ}{a}{}^{ m NR}_4 $	$< 1 \times 10^{6} \text{ GeV}^{-3}$ < 1.7 x	10 ⁵ GeV ⁻³
	$ \overset{\circ}{c}_{4}^{\mathrm{NR}} $	$1 \times 10^{6} \text{ Gev}^{-3}$ < 1.7 x	10 ⁵ GeV ⁻³

A. H. Gomes et al., Phys. Rev. D, 90:076009, 2014.

But wait...? Where is the transition F=0 to F=1?

Lamb Shift of Hydrogen: HFS Selector

Most promising transition for precise measurement with H

Lamb Shift of Muonium: HFS Selector

Also promising transition for precise measurement with Muonium

→HFS selector less crucial in Muonium due to more isolated F=0 to F=1 transition

- →reduces still background and line-pulling and simplifies analysis
- →reduces statistics

Lamb Shift of Muonium with Mu-MASS

Muonium

LS at 1045.5(6.8) MHz 2S HFS at 559.6(7.2) MHz First time detection of M(3S)

G. Janka et al., Nature Commun. 13 (2022)

→ Promising, but suffers from 3S contamination → We can fix that!

Lamb Shift of Muonium

Outlook on Muonium Lamb Shift

Increasing Muonium flux is key to improve uncertainty!

Change to thinner carbon foil (2.5ug/cm² to 0.5ug/cm²)

Tests with protons and muons very promising

Measurement of M LS with new foil planned for June 2023, but unfortunately HIPA was broken during our beamtime...

Outlook on Muonium Lamb Shift

For all options, increasing Muonium flux is key to improve uncertainty!

- Change to few layers of graphene (~1nm thickness)
 - To my knowledge not commercially available. Producing foils is an art!
- Upgrade of muE4 beamline (~ factor 3 in flux, expected 2025)
 - L. Zhou et al., Phys. Rev. Accel. Beams 25, 051601 (2022)
- MuCool beamline @ PSI
 - Would allow to use gas targets for M formation
 - A. Antognini et al., SciPost Phys.Proc. 5 (2021)
- HiMB upgrade @ PSI
 - Two orders of magnitude higher µ+ flux
 - M. Aiba et al., arXiv:2111.05788

With **MuCool** beamline and **HiMB UPGRADES** @ PSI, measurements with uncertainty of the order of hydrogen would become feasible

Thank you for your attention!

PAUL SCHERRER INSTITUT

Backup Slides

30

Extension to correct TOF spectra and extract energy loss

Lamb Shift of Muonium: RF Region

- Design of transmission line chosen, inspired by Lundeen and Pipkin
 S. R. Lundeen and F. M. Pipkin. Metrologia, 22(1):9–54, 1986.
- Trial & Error with VNA until power loss was minimized

Lamb Shift of Antihydrogen: Detection Setup

Lamb Shift of Muonium with Mu-MASS

Options for upcoming M LS measurements

0.15

0

400

600

800

0.05

Option 1)

Additionally apply weak electrical field to quench 3S and measure F=0 to F=1 transition

- Cleanest way, least systematics expected
- Most promising for precision measurement
- Reduces also 2S F=0 population
- Needs higher M flux or an increase in beamtime

Option 2) Additionally apply weak electrical field to quench 4S

and measure F=1 to F=1 and F=1 to F=0 transition

- n=2 population less affected by electrical field
- Statistics much easier to gather
- Issue of line-pulling and necessity of good knowledge of line-shape still present → Systematics!

Option 3) Additionally apply weak electrical field to quench 4S, depopulate F=1 to F=0 transition with HFS selector and measure F=1 to F=1

- Reduced line-pulling by F=1 to F=0 transition, but still needs good knowledge of line-shape
- Need to extend beamline, which results in loss of M flux

1200

1000

1400

Frequency [MHz]

1600