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What about 2S1/2 and 2P1/2?

• Same energy according to Dirac

• Experimental evidence for a splitting 
found in early 1930s, nothing conclusive
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(3)

2S → 2P → 1S + γ(122nm)
τ2S = 0.12s,

τ2P = 1.6ns

1S

W. E. Lamb and R. C. Retherford. 

Phys. Rev., 72:241–243, 1947. 
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Lamb Shift transition

W. E. Lamb and R. C. Retherford. 

Phys. Rev., 72:241–243, 1947. 
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Lamb Shift

Fundamental discovery for the development of QED
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Lamb Shift of Muonium
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μ+

e-

Muonium (M)

• M is purely leptonic, free from finite size effects

→ excellent candidate to test bound-state QED

→ any deviation between theory and 

measurements hint of New Physics

• Prediction of M in 1957 by Friedmann, Hughes, 

Telegdi, detected in 1960 
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2S Muonium formation: Beamfoil technique
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LEM beamline @ PSI

LEM beamline @ PSI
• delivers high rate μ+ (around 5 – 10 kHz),

with energies adjustable from 2 to 20 keV

→ unique!

→ ... and exactly what we need!

LAMB 

SHIFT 

SETUP
@ TRIUMF: C .J. Oram et al. Phys. Rev. Lett. 52, 910 (1984).

@ LAMPF: K. Woodle, et al., Phys. Rev. A 41, 93 (1990).

1070(13) MHz1042(22) MHz
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2S Muonium formation at LEM
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2S Muonium formation at LEM
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2S Muonium formation at LEM
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μ+M
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2S Muonium formation at LEM
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Rejection electrode on/off to show Muonium formation
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2S Muonium formation at LEM
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Lya setup with quenching on/off to show M(2S) formation

Lya MCPs

2S

1S

2P1/2

Electrical quenching

Relaxation

Lya photon,

Detect!

τ = 1.6ns

τ = 2.2μs

τ = 2.2μs
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2S Muonium formation at LEM
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Lya setup with quenching on/off to show M(2S) formation

→ M(2S) beam suitable for Lamb shift measurement

→ (GBAR Lya setup is commissioned)

G. Janka et al. Eur. Phys. J. C, 80(9):804, 2020

Lya MCPs

Lya
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Lamb Shift of Muonium: Principle
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Lamb Shift of Muonium: Microwave
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The journey begins...
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Lamb Shift of Hydrogen with Mu-MASS
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Hydrogen

First tests with proton beam:

→Microwave and Lya-Detection setup works as expected

→Contamination in beam from higher n states (4S seen, 3S expected), 
needs to be taken into account for Muonium measurements as well
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Lamb Shift of Muonium with Mu-MASS
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Muonium

G. Janka et al., EPJ Web Conf. 262 (2022)

→ Limited by statistics

→ Agrees well with theory

→ Precision not enough to test b-QED, but constrains new physics
B. Ohayon, G. Janka, et al., PRL 128, 011802 (2022)

LS at 1047.2(2.5) MHz
Theory at 1047.498(1) MHz
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Looking for New Physics: New Force
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L. Morel et al, Nature 588, 61 (2020),

R. H. Parker et al., Science 360, 191 (2018). 

D. Hanneke et al. e Phys. Rev. Lett. 100, 120801 (2008)

B. Abi, et al. Phys. Rev. Lett. 126, 141801 (2021) 

combined with bound from (g-2)e

Bands: region suggested by (g-2)μ

SM 

X

gX

gX

NP
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Looking for New Physics: SME
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< 1.7 x 105 GeV-3

< 1.7 x 105 GeV-3

Lorentz and CPT Only Lorentz

Additional energy term for Muonium Lamb Shift:

20

A. H. Gomes et al., Phys. Rev. D, 90:076009, 2014.
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But wait...? Where is the transition F=0 to F=1?
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F=1 to F=0

F=1 to F=1

F=0 to F=1 ???

Never observed before in M...
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Lamb Shift of Hydrogen: HFS Selector
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Without HFS selector With HFS selector

→reduces overall linewidth, 
background and line-
pulling

→simplifies analysis

→reduces statistics

RF region
2S → 2P → 1S + γ(122nm)

τ2S = 0.12s, τ2P = 1.6ns

p

p

H(1S, 2S) H(2S → 1S + γ) H(1S)

p

F=0 to F=1: 

Most promising transition for precise measurement with H
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Lamb Shift of Muonium: HFS Selector
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Without HFS selector With HFS selector

→HFS selector less crucial in Muonium due to 
more isolated F=0 to F=1 transition

→reduces still background and line-pulling 
and simplifies analysis

→reduces statistics

F=0 to F=1: 

Also promising transition for precise measurement with Muonium
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Muonium

LS at 1045.5(6.8) MHz

First time detection of M(3S)
2S HFS at 559.6(7.2) MHz

G. Janka et al., Nature Commun. 13 (2022) 

Lamb Shift of Muonium with Mu-MASS

Muonium

3S – 3P1/2

→Promising, but suffers from 3S contamination

→We can fix that!
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Lamb Shift of Muonium

G. Janka et al.

2022

2023
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Outlook on Muonium Lamb Shift
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Increasing Muonium flux is key to improve uncertainty!

Change to thinner carbon foil (2.5ug/cm2 to 0.5ug/cm2)

• Tests with protons and muons very promising

Significantly smaller 

energy loss
Similar neutral 

formation efficiency
Improved tagging 

efficiency

Measurement of M LS with new foil planned for June 2023, 

but unfortunately HIPA was broken during our beamtime...
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Outlook on Muonium Lamb Shift
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For all options, increasing Muonium flux is key to improve uncertainty!

• Change to few layers of graphene (~1nm thickness)

• To my knowledge not commercially available. Producing foils is an art!

• Upgrade of muE4 beamline (~ factor 3 in flux, expected 2025)
• L. Zhou et al., Phys. Rev. Accel. Beams 25, 051601 (2022)

• MuCool beamline  @ PSI
• Would allow to use gas targets for M formation

• A. Antognini et al., SciPost Phys.Proc. 5 (2021)

• HiMB upgrade  @ PSI
• Two orders of magnitude higher μ+ flux

• M. Aiba et al., arXiv:2111.05788

With MuCool beamline and HiMB UPGRADES @ PSI, measurements with 
uncertainty of the order of hydrogen would become feasible
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Thank you for your attention!
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Backup Slides
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2S Muonium formation at LEM
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(1&2) (3)

Extension to correct TOF spectra and extract energy loss

(4)
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Lamb Shift of Muonium: RF Region

32

• Design of transmission line chosen, inspired 

by Lundeen and Pipkin

• Trial & Error with VNA until power loss was 

minimized

S. R. Lundeen and F. M. Pipkin. Metrologia, 22(1):9–54, 1986.
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Lamb Shift of Antihydrogen: Detection Setup
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Lya Detectors
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Lamb Shift of Muonium with Mu-MASS
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Formation through Ps target

Formation through carbon foil

Quenching with ring electrodes

Quenching with flat grids

GBAR
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Options for upcoming M LS measurements
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Option 1)

Additionally apply weak electrical field to quench 3S 

and measure F=0 to F=1 transition

• Cleanest way, least systematics expected

• Most promising for precision measurement

• Reduces also 2S F=0 population

• Needs higher M flux or an increase in beamtime

Option 2)

Additionally apply weak electrical field to quench 4S 

and measure F=1 to F=1 and F=1 to F=0 transition

• n=2 population less affected by electrical field

• Statistics much easier to gather

• Issue of line-pulling and necessity of good 

knowledge of line-shape still present

→ Systematics!

Option 3) Additionally apply weak electrical field to quench 4S, depopulate F=1 to F=0

transition with HFS selector and measure F=1 to F=1

• Reduced line-pulling by F=1 to F=0 transition, but still needs good knowledge of line-shape

• Need to extend beamline, which results in loss of M flux 


