Laser spectroscopy of muonic atoms

from benchmarks for nuclear physics to BSM searches

Aldo Antognini

Paul Scherrer Institute ETH, Zurich

CREMA collaboration

Swiss National Science Foundation

One possibility to search BSM physics with atomic systems

02.07.2023

The simplicity of hydrogen

PAUL SCHERRER INSTITUT

_____|

الج

02.07.2023

Not so simple

PAUL SCHERRER INSTITUT ETH

Limited by nuclear structure effects

The hydrogen atom

Experiment Dirac p finite size

$$f_{1s-2s} = 2\ 466\ 061\ 413.187\ 035(10)\ M$$

Aldo Antognini

Ascona

— BSM ?

Parthey et al., Phys. Rev. Lett. **107**, 203001 (2011)

02.07.2023

Laser spectroscopy of muonic hydr

ETH

 μ

Aldo Antognini

111 N81 N8:0

02.07.2023

gen

Finite size effects

$$_{\rm NS} = \frac{2}{3n^3} Z^4 \alpha^4 m_r^3 r^2$$

The principle of the muonic atom experiments

▶ Stop low-energy muons in 1 mbar H2 gas ▶µH is formed (1% in the 2S-state) Excite 2S-2P transition with laser ▶ Detect X-ray from 2P-1S de-excitation ▶ Plot number of X-rays vs. laser frequency

p-k (1

 π (

 μ (

μ (

 μ p

La

X-ı

Ascona

The setup

Beam line delivering slow muons 500 $\mu^{-} \, {\rm s}^{-1}$ at 1 keV

Aldo Antognini

Ascona

Gas target **Optical cell** X-ray detectors **Electron detectors**

The proton radius puzzle (2013)

Aldo Antognini

02.07.2023 Ascona

µp spectroscopy

Many activities were triggered by this puzzle (>1500 citations)

Aldo Antognini

Ascona

02.07.2023

New experiments -scattering -spectroscopy

New physics?

• μp experiment

µp theory •

H experiments •

BSM physics

• e-p scattering

PAUL SCHERRER INSTITUT

╺╡╤╪╤╢╸

sensitive to the radius

$$\Delta E_{\rm size} \sim m^3 R_p^2$$

insensitive to systematics

- small atomic size
- large binding energy

$$\langle r \rangle = \frac{\hbar}{Z\alpha c} \frac{n^2}{m}$$
$$E_n = -\frac{m}{m_e} \frac{R_\infty}{n^2}$$

Matrix elements for perturbations

Aldo Antognini

Ascona

02.07.2023

р $m_{\mu} \approx 200 m_e$

 $\Delta E = \langle \bar{\Psi} | H_1 | \Psi \rangle$ $H_1 = -\vec{\mu} \cdot \vec{B} \sim 1/m$ $H_1 = -\vec{d} \cdot \vec{E}$

 $E_{\rm LS}^{\rm exp} = 202.3706(23) \,{\rm meV}$

• μp experiment

• μp theory

• H experiments

BSM physics

• e-p scattering

PAUL SCHERRER INSTITU

Aldo Antognini

Ascona

Discrepancy= 0.3 meV

$E_{\rm LS}^{\rm th} = 206.0344(3) - 5.2259 r_p^2 + 0.0289(25) \,{\rm meV}$ arXiv:2212.13782

Hagelstein Pachucki

$r_p = 0.84060(39) \text{ fm}$

$$E_n = -\frac{m}{m_e} \frac{R_\infty}{n^2}$$

µp experiment

µp theory

H experiments •

BSM physics •

• e-p scattering

- Tuning (e.g. vector vs axial-vector)
- ▶ Preferential coupling to µ and p
- ▶ No UV completion?

under the assumption that C^{μ}_{A} solves the muonic g-2 problen Tils ohaden orange region PiR Dorest 10,000 0224 (20 75) due to energy splittings in muonic Mg and Si at 2σ . The Agreen band, outlined by dashed lines, is the constraint on C_A^{μ} And the muonic g-2 problem $(\pm 2\sigma)$ under the

$$i\mathcal{M} = \frac{i}{2} \frac{g_W}{\cos\theta_W} C_V^{\mu} \quad \alpha(k)\epsilon_{\beta}^{\sharp}$$

$$\times \left\{ \frac{\gamma^{\beta}(\not p_1 + \not p)}{(p_1 + p_3)} \right\} \gamma^{\alpha} \gamma^$$

where k is the Z 4-mom momentum, p_2 is t e antiis the ϕ_V 4-moment im.¹⁰As with the W pecay, here we only focus on the ve tor contribution to the Z decay, but one can easily show that the social method m_{Φ} (MeV). one can easily show 1 equivalent up to an overall minus sign (which is irrelevant to the decay amplitude squared).

adence of the decay width (7) on m_{ϕ} (which resembles

 $\Gamma_Z =$ $48\sqrt{2}\pi^3$

$\mathcal{L}_{\phi} \supset -\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 + e \epsilon_f \phi \bar{\psi}_f \psi_f$

µp experiment •

μp theory •

H experiments •

BSM physics •

• e-p scattering

PAUL SCHERRER INSTITUT

02.07.2023

Proton charge radii from e-p scattering

Aldo Antognini

Ascona

02.07.2023

Gao and Vanderhaegen, arXiv:2105.005

Aldo Antognini

PAUL SCHERRER INSTITUT

Ascona

- Allow for a consistent description of all data (including neutron) in the space- and timelike regions based on fundamental principles.
- Always led to a small proton charge radius

Aldo Antognini

Ascona

02.07.2023

Ascona

 μ D and H-D isotopic shift

H/D shift: $r_{\rm d}^2 - r_{\rm p}^2 = 3.82007(65) \, {\rm fm}^2$ = 2.1256(8) fm $\mu d:$ $r_{
m d}$

Advances in nuclear-structure contributions in H, D and μ D atoms removed a 2.5σ tension

Pachucki et al., PRA 97, 062511 (2018) Kalinowsiet al., PRA 99, 030501 (2019) Lensky et al., PLB 835 (2022) 137500 Lensky et al., EPJA 58, 224 (2022)

Aldo Antognini

New measurements in H

- Values have moved towards $r_p(\mu H)$, yet, some deviations still exist.
- Deviations tends to decrease as n increases.

'10 Muonic atoms Lensky et al. '22 (μ D+iso) · Antognini et al. '13 (μ H) Pohl et al. '10 (μ H) -

H spectroscopy

CODATA

'18 -

'14

H(2S-8D) Colorado '21 -H(1S-3S) Garching '20 -H(2S-2P) Toronto '19 -H(1S-3S) Paris '18-H(2S-4P) Garching '17 H pre '14 (CODATA) -

ep scattering

Xiong et al. '19 (PRad) -Horbatsch et al. '17 -Higinbotham et al. '16 -Lee et al. '15 Sick '12 Bernauer et al. '10 (MAMI)

ep scatt., disp. analysis

Aldo Antognini

Ascona

Hessels

Aldo Antognini

Ascona

02.07.2023

The specificity of muonic atoms as probes of new physics

▶ Muonic atoms as possible probes of BSM physics

Sensitive to new forces especially in the MeV-GeV mass range.

Sensitive to flavour violating coupling

▶ Can be used also to bound BSM physics coupling to n

Novel effective field theory approaches to low-energy measurements

Aldo Antognini

What to do with a precise proton radius?

- A simplified story (neglecting least square) adjustment)
- Slightly muonic-atom centric approach

Aldo Antognini

μH measurements

Muonic hydrogen

$$E_{2S-2P}(\mu H) \approx QED + \kappa r_p^2 + NS$$

($\delta = 1 \times 10^{-5}$)

Aldo Antognini

02.07.2023

Combining μ H and H(1S-2S) measurements

Aldo Antognini

02.07.2023 Ascona

Combining μ H and H(1S-2S) measurements

Adding for example the H(1S-3S).....

Muonic hydrogen

$$E_{2S-2P}(\mu H) \approx QED + \kappa r_p^2 + NS$$

($\delta = 1 \times 10^{-5}$)

Hydrogen

$$E_{1S-2S}(H) \approx \frac{3}{4}R_{\infty} + QED' + k'r_p^2$$

 $(\delta = 4 \times 10^{-15})$

$$E_{1S-3S}(H) \approx \frac{8}{9}R_{\infty} + QED'' + k''r_p^2$$

($\delta = 2.5 \times 10^{-13}$)

Grinin et al. Science 370(6520):1061–1066 (2020)

Aldo Antognini

Ascona (

02.07.2023

27

Adding H(1S-3S).....

Adding H(1S-3S).....

Aldo Antognini

Ascona (

Theoretical tools

- ▶ dispersive
- sum rules
- chiral perturbation th.
- ▶ lattice QCD
- Nuclear structure contribution

Adding HD⁺ measurements

Muonic hydrogen

Karr et al., Springer Proc. Phys. 238:75–81 (2020) Alighanbari et al., Nature 581(7807):152-158 (2020) Patra et al., Science 369(6508):1238–1241 (2020)

Aldo Antognini

02.07.2023 Ascona

Adding Penning traps measurements

Heiße et al. Phys. Rev. A 100(2):022518 (2019) Sturm et al. Nature 506(7489):467-470 (2014)

Combining measurements in μp , H, HD⁺ and Penning-traps

Muonic hydrogen

Combining measurements in μp , H, HD⁺ and Penning-traps

N. Schwegler

S. Sturm

Test of bound g-factors $\delta \sim 4 \times 10^{-11}$

Ascona

The fine structure constant

Test g-factor theory

 $\delta \sim 3 \times 10^{-13}$

Extract

Fine structure constant

 $\delta \sim 2 \times 10^{-10}$

Aldo Antognini

02.07.2023 Ascona

Hanneke et al, PRL 2008, 100, 120801 Aoyama et al, PRD 2018, 97, 036001

Xin Fang

Parker et al., Sciece 360, 191-195 (2018) Morel et al., Nature 588, 61-68 (2020)

Least square adjustment of fundamental constants with/without BSM

Self-consistent extraction of spectroscopic bounds on light new physics

Cédric Delaunay,^{1,2,*} Jean-Philippe Karr,^{3,4,†} Teppei Kitahara,^{5,6,7,‡} Jeroen C. J. Koelemeij,^{8,§} Yotam Soreq,^{9,¶} and Jure Zupan^{10,**}

The presence of BSM physics would affect the extraction of fundamental constants, possibly reducing the claimed sensitivity of BSM searches.

Aldo Antognini

Ascona 02

Radius as a benchmark for *ab initio* few-nucleon theories

Aldo Antognini

Krauth et al., , Nature 589 (2021) 7843, 527-531

Towards consistent treatment of the nuclear structure: TPE and radii

Ascona

The helion charge radius

Nuclear structure QED Finite size $E_{\rm LS}^{\rm th} = 1644.348(8) - 103.383 r_h^2 + 15.499(378) \,{\rm meV}$ $E_{\rm LS}^{\rm exp} = 1258.598 \, (48)^{\rm exp} (3)^{\rm theo} \, {\rm meV}$

Aldo Antognini

02.07.2023 Ascona

Pachucki et al., arXiv:2212.13782 Schuhmann et al., arXiv 2305.11679

Radius as benchmark for ab initio few-nucleon predictions

Aldo Antognini

Ascona

02.07.2023

In Breit frame

CPT tests (Lsym-project)

Aldo Antognini

Frequency Comb spectroscopy in He⁺

Comb spectroscopy in the XUV

Trapping and cooling

Quantum logic detection

Ascona

E. Grundeman

PAUL SCHERRER INSTITUT

Aldo Antognini

The He atom

Two electrons are much more than one electron

Clausen et al, PRL 127, 093001 (2021) Zheng, et al, PRL 119, 263002 (2017)

For some transitions there is perfect agreement, for others perfect disagreement

 $m\alpha^7$ contributions completed

Patkos et al, PRA 103, 042809 (2021)

Aldo Antognini

But this is another story

Talk Gloria Clausen

Talk Yuri van der Werf

HFS in muonic hydrogen

Nuber et al., arXiv: 2211.08297

See poster O. Kara

Impact of the measurement

Provides information on magnetic structure of the proton

- Spin structure program
- Form factor program
- Chiral perturbation theory
- Lattice QCD

Combined with H \rightarrow Test of HFS theory with rel. acc. < 10^{-8}

Sensitive especially to axial-vector BSM contributions

$$V_{\rm HF,A}(r) = \begin{cases} -\frac{2g_A^{(1)}g_A^{(2)}}{3\pi} \left(\frac{e^{-m_{\phi}r}}{r} + \frac{2\pi\delta^0}{m} -\frac{4d_v^{(A)}}{m_1m_2}\delta^{(3)}(r)\mathbf{S_1} \cdot \mathbf{S_2} \right) \end{cases}$$

Aldo Antognini

02.07.2023 Ascona

 $\frac{f^{(3)}(r)}{m_{\perp}^2} \mathbf{S_1} \cdot \mathbf{S_2} \qquad \text{for } m_{\phi} \lesssim a_0^{-1},$

for $m_{\phi} \sim m_r$,

C. Peset Y. Stadnik

43

Nuclear and hadron structure

ETH

A MERICAL AND

Muonic atom spectroscopy

Aldo Antognini

Ascona

QED tests in simple atomic systems