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One possibility to search BSM physics with atomic systems
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The simplicity of hydrogen
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Not so simple
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The hydrogen atom
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Laser spectroscopy of muonic hydrogen
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The principle of the muonic atom experiments
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The setup
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The proton radius puzzle (2013)
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Many activities were triggered by this puzzle (>1500 citations)
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The proton radius puzzle
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• μp experiment

• μp theory

• H experiments

• BSM physics

• e-p scattering

sensitive to the radius


insensitive to systematics  
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The proton radius puzzle
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• μp experiment

• μp theory

• H experiments

• BSM physics

• e-p scattering
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FIG. 2. Important Feynman diagrams contributing to the
QED part of the Lamb shift. #1 The Uehling Term; #4 The
Källén-Sabry contribution; #5 One loop eVP in two Coulomb
lines; #9/9a/10 Light-by-light scattering contributions; #13
Mixed eVP/µVP; #11 Self energy corr. to eVP; #31 Mixed
eVP/hadronic VP; #12 eVP loop in SE contribution; #30
Hadr. loop in SE contribution; #32 µVP loop in SE contri-
bution (included in #21). In our summary, terms #5, #9,
#10, #9a, #13(2) and #31(2) also contain their respective
cross diagrams.

Jentschura agree very well [6, 61]. The calculation from
Martynenko in Ref. [4] provides an incomplete value since
he only calculates the second diagram seen in Fig. 2,
#11(2). He adopts the complete value of Jentschura in
his summary. Borie only partially calculates this term, as
stated in appendix C of her summary [3]. Therefore our
choice is compiled from Karshenboim’s and Jentschura’s
value.

Insertion of an eVP or hVP loop in the µSE correction
leads to corrections of higher order. The contribution of
the additional eVP loop (#12) was calculated by Borie
and Karshenboim and their values agree well. The hVP
term (#30) was only calculated by Karshenboim whose
value we adopt. There is also a contribution due to a
µVP insertion in the µSE line. This contribution is not
separately added to our summary, because it is already
included in the µSE value.

The contribution with an eVP and a µVP loop in the
one photon interaction is given by the first diagram of
#13 in Fig. 2. It was evaluated by Martynenko and Borie
and their values agree. Karshenboim provides values of
this contribution summed with the respective term in
the two Coulomb line diagram (second part of #13) [61].
Both terms are of similar size, therefore the values of
Karshenboim and Borie/Martynenko di�er by nearly a
factor of two. Since the total term is small, this uncer-
tainty is not important for the Lamb shift extraction.

In addition, Karshenboim also calculated the influ-
ence of the mixed eVP-hVP diagram in one and two
Coulomb lines (Fig.2, #31). Borie only gives a term la-
beled “higher order correction to µSE and µVP” (#21)
that also includes the µVP loop in the SE contribution
(previously #32).

The insertion of a hadronic vacuum polarization (hVP;
#14) loop in the one Coulomb-photon interaction leads
to another correction calculated by Borie and Marty-
nenko. Both values agree within the uncertainty given
in Borie’s publication [3]. We use Borie’s result [3] as her
uncertainty includes Martynenko’s value [4].

Item #17 is the main recoil correction in the Lamb
shift, also called the Barker-Glover correction. The avail-
able calculations of the term by Borie, Martynenko and
Karshenboim agree perfectly.

Item (#18) is the term called “recoil finite size” by
Borie [3]. It is of order (Z–)5 ÈrÍ

(2)
/M and is linear in

the first Zemach moment. It has first been calculated
by Friar [63] (see Eq. F5 in App. F) for hydrogen and
has later been given by Borie [3] for µd, (µ3He)+, and
(µ4He)+. We discard item #18 because it is considered
to be included in the elastic TPE [64, 65].

Further relativistic recoil corrections of the order
(Z–)5 and (Z–)6 are also included in our summary (#22,
#23). The (Z–)5 correction was calculated by Borie,
Martynenko and Jentschura and their results agree. The
(Z–)6 term was only determined by Martynenko, but is
two orders of magnitude smaller than the term of the
previous order. Therefore we simply accept his value in
our summary.

Eth
LS = 206.0344(3) − 5.2259 r2

p + 0.0289(25) meV

Eexp
LS = 202.3706(23) meV

QED Finite size

~m3

Nuclear structure
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be scaled by 1/23 to account for the 2S state.
Item #r2b’ is a VP correction of order –(Z–)5. It is

an elastic contribution and only calculated by the Marty-
nenko group [4]. It is not parameterized with the charge
radius squared and therefore given as a constant. We
do not include this correction for the following reason:
In muonic deuterium this correction cancels to a large
amount with its inelastic counterpart [70] (see below
Eq. (62)). This cancellation is also expected for muonic
helium ions. Since the inelastic correction of same order
has not been calculated yet, we decided to not include
this value in the final sum.

For the finite size term of the order (Z–)6 (#r3) and
the same-order correction (#r3’), Borie and Martynenko
use di�erent methods of calculation. Here, #r3’ is given
as an absolute value, because of its non-trivial depen-
dence on the charge radius, similar to #r2’. A term cor-
responding to the Èln rÍ coe�cient is part of term (#r3)
for Martynenko and part of (#r3’) for Borie, leading to
a correlation between both. In order to stay consistent
with the summary in µD [8] we decided to average both
terms providing #r3 = ≠0.1340 ± 0.0030 meV/fm2 and
#r3Õ = 0.067 ± 0.012 meV until a clear definition is set-
tled on. Note that although the uncertainty of #r3’ is
still a factor of 5 smaller than the uncertainty goal, it
would be helpful if this 20% relative uncertainty in the
term could be improved.

The total r2

– coe�cient of the Lamb shift is given by

�E(F in. size) = ≠ 106.3536(82) meV/ fm2 r2

–

+ 0.0784(112) meV.
(10)

The uncertainty of the first term corresponds to 0.02 meV
(for r– = 1.681 fm), already 30% of our uncertainty goal.

IV. TWO-PHOTON EXCHANGE

Important parts of the nuclear structure dependent
Lamb shift contributions are created by the two-photon
exchange (TPE) between muon and nucleus (see Fig. 3).
Two distinct parts can be separated:

�ELS

TPE
= ”EA+N

Friar
+ ”EA+N

inelastic
, (11)

where ”EA+N
Friar

is the Friar moment contribution c

(Fig. 3 (a)+(b)), also known as “third Zemach mo-
ment contribution”, and ”EA+N

inelastic
is the inelastic part

of the TPE, also called the polarizability contribution
(Fig. 3 (c)+(d)). Each part can again be separated into
a nuclear (A) and a nucleon (N ) part.

c
The term “Friar moment” has been introduced by Karshenboim

et al. in [71].
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FIG. 3. Two-photon exchange in the (µ4He)+ Lamb shift.
The two diagrams (a) + (b) are contributing to the Friar mo-
ment contribution ”EFriar of the Lamb shift while the similar
diagrams (c)+(d) show the nuclear polarizability contribution
of the helium nucleus ”Einelastic. Thick dots indicate form
factor insertions while the gray blobs represent all possible
excitations of the nucleus.

A. The Friar moment contribution in (µ4He)+

The Friar moment contribution ”EA
Friar

is an elastic
contribution, analog to the finite size e�ect, but of or-
der (Z–)5, i.e. in the two-photon interaction (see Fig. 3,
(a), (b)). In the following we discuss five ways of how the
Friar moment can be obtained:

Option a: The most modern calculation of the
Friar moment contribution is provided by the TRI-
UMF/Hebrew group [56, 72, 73]. They obtain the nuclear
Friar moment contribution ”EA

Friar
by performing ab ini-

tio calculations, using state-of-the-art nuclear potentials.
Their result of [56]

”EA
Friar

(a) = 6.14 ± 0.31 meV (12)

uses the sum of their terms ”Z1 and ”Z3 [72] as an approx-
imation for the elastic Friar moment contribution. This
approach has recently made impressive progress. How-
ever, compared to the following options below, the un-
certainty is still rather large. Note, that in the isotope
shift (Sec. VII), a large part of this uncertainty cancels.

The contribution of the individual nucleons ”EN
Friar

is
not automatically included by this approach and has to
be calculated separately. The neutron Friar moment
is found to be negligible [74]. For the proton, we fol-
low [75–77] and obtain its value in (µ4He)+ by using the
proton’s Friar moment contribution in muonic hydrogen
”E(p)

Friar
(µH) = 0.0247(13) meV provided in [78]. We scale

it with the wavefunction overlap, that depends on the re-
duced mass (mr) and proton number (Z) scaling to the
third power. We account for the di�erent number of pro-
tons in both systems with an additional Z ratio. Another
reduced mass scaling factor enters from the third term in
Eq. (11) of [76] according to [79]. We obtain for the total
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FIG. 3. Two-photon exchange in the (µ4He)+ Lamb shift.
The two diagrams (a) + (b) are contributing to the Friar mo-
ment contribution ”EFriar of the Lamb shift while the similar
diagrams (c)+(d) show the nuclear polarizability contribution
of the helium nucleus ”Einelastic. Thick dots indicate form
factor insertions while the gray blobs represent all possible
excitations of the nucleus.
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FIG. 3. Two-photon exchange in the (µ4He)+ Lamb shift.
The two diagrams (a) + (b) are contributing to the Friar mo-
ment contribution ”EFriar of the Lamb shift while the similar
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der (Z–)5, i.e. in the two-photon interaction (see Fig. 3,
(a), (b)). In the following we discuss five ways of how the
Friar moment can be obtained:
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Friar moment contribution ”EA
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imation for the elastic Friar moment contribution. This
approach has recently made impressive progress. How-
ever, compared to the following options below, the un-
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not automatically included by this approach and has to
be calculated separately. The neutron Friar moment
is found to be negligible [74]. For the proton, we fol-
low [75–77] and obtain its value in (µ4He)+ by using the
proton’s Friar moment contribution in muonic hydrogen
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tons in both systems with an additional Z ratio. Another
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rp = 0.84060(39) fm
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c
The term “Friar moment” has been introduced by Karshenboim

et al. in [71].

(a)
µ

–

(b)
µ

–

(c)
µ

–

(d)
µ

–

FIG. 3. Two-photon exchange in the (µ4He)+ Lamb shift.
The two diagrams (a) + (b) are contributing to the Friar mo-
ment contribution ”EFriar of the Lamb shift while the similar
diagrams (c)+(d) show the nuclear polarizability contribution
of the helium nucleus ”Einelastic. Thick dots indicate form
factor insertions while the gray blobs represent all possible
excitations of the nucleus.

A. The Friar moment contribution in (µ4He)+

The Friar moment contribution ”EA
Friar

is an elastic
contribution, analog to the finite size e�ect, but of or-
der (Z–)5, i.e. in the two-photon interaction (see Fig. 3,
(a), (b)). In the following we discuss five ways of how the
Friar moment can be obtained:

Option a: The most modern calculation of the
Friar moment contribution is provided by the TRI-
UMF/Hebrew group [56, 72, 73]. They obtain the nuclear
Friar moment contribution ”EA

Friar
by performing ab ini-

tio calculations, using state-of-the-art nuclear potentials.
Their result of [56]

”EA
Friar

(a) = 6.14 ± 0.31 meV (12)

uses the sum of their terms ”Z1 and ”Z3 [72] as an approx-
imation for the elastic Friar moment contribution. This
approach has recently made impressive progress. How-
ever, compared to the following options below, the un-
certainty is still rather large. Note, that in the isotope
shift (Sec. VII), a large part of this uncertainty cancels.

The contribution of the individual nucleons ”EN
Friar

is
not automatically included by this approach and has to
be calculated separately. The neutron Friar moment
is found to be negligible [74]. For the proton, we fol-
low [75–77] and obtain its value in (µ4He)+ by using the
proton’s Friar moment contribution in muonic hydrogen
”E(p)

Friar
(µH) = 0.0247(13) meV provided in [78]. We scale

it with the wavefunction overlap, that depends on the re-
duced mass (mr) and proton number (Z) scaling to the
third power. We account for the di�erent number of pro-
tons in both systems with an additional Z ratio. Another
reduced mass scaling factor enters from the third term in
Eq. (11) of [76] according to [79]. We obtain for the total
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FIG. 3: The parameter space necessary to satisfy experimen-

tal constraints. Solid lines refer to constraints on Cµ
V . Dashed

lines refer to constraints on Cµ
A. The green band, outlined by

solid lines, is the constraint on Cµ
V necessary to solve the

proton radius problem (±2�). The shaded red region is the

restricted region of Cµ
V due to the constraint that the branch-

ing ratio for W goes to µ⌫�V + µ⌫�A must be less than 4%

under the assumption that Cµ
A solves the muonic g � 2 prob-

lem. The shaded orange region is the restricted region on Cµ
V

due to energy splittings in muonic Mg and Si at 2�. The

green band, outlined by dashed lines, is the constraint on Cµ
A

necessary to solve the muonic g � 2 problem (±2�) under the

assumption Cµ
V solves the proton radius problem (±2�).

significantly opening up the allowed parameter space for
(CA, m�).

In Fig. 3 we see that there are broad regions of param-
eter space for which we can find values of Cµ

V , Cµ
A, and

m� that simultaneously solve the proton radius puzzle
and the muonic g � 2 discrepancy while satisfying the
considered experimental constraints.

For completeness, we also comment on radiative cor-
rections to Z ! µ+µ� decay, namely Z ! µ�µ+�V and
µ�µ+�A decay as represented in Fig. 4.
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where k is the Z 4-momentum, p1 is the muon 4-
momentum, p2 is the anti-muon 4-momentum, and p3

is the �V 4-momentum. As with the W decay, here we
only focus on the vector contribution to the Z decay, but
one can easily show that the axial vector contribution is
equivalent up to an overall minus sign (which is irrelevant
to the decay amplitude squared).

In this case, cancellations between the two diagrams
ensure the Ward identity is satisfied. Therefore, there is
no poor behavior at high energies when the � is longi-
tudinally polarized. This is seen in the logarithmic de-
pendence of the decay width (7) on m� (which resembles
that of the W decay (5)),
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As in the calculation of the W ! µ⌫� decay, we have
neglected the muon mass, and we have expanded the Z’s
decay width in (7) to leading order in m�/mZ . These
steps are motivated by the arguments given in the para-
graph following (5).

III. SCALAR THEORY

We also consider a scalar theory which is well behaved
without the addition of any shadow particles. The inter-
action Lagrangian is

Lint,S = �S

h
Cµ

S  ̄µ µ + Cp
S ̄p p

i
(8)

+ �P

h
Cµ

P  ̄µ�
5 µ + Cp

P  ̄p�
5 p

i

where �S is the scalar field, �P is the pseudo-scalar field
where m�S ⌘ m�P , and the C’s (with corresponding su-
perscripts and subscripts) are the corresponding coupling
strengths. In this section it is understood that � refers
to either �S or �P .

As with the vector theory, we again consider the con-
straint due to the branching ratio of W ! µ⌫�S plus
W ! µ⌫�P . The decay amplitude for both scalar and
psuedoscalar cases is given by the Feynman diagram in
Fig. 5.
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where �S is the scalar field, �P is the pseudo-scalar field
where m�S ⌘ m�P , and the C’s (with corresponding su-
perscripts and subscripts) are the corresponding coupling
strengths. In this section it is understood that � refers
to either �S or �P .

As with the vector theory, we again consider the con-
straint due to the branching ratio of W ! µ⌫�S plus
W ! µ⌫�P . The decay amplitude for both scalar and
psuedoscalar cases is given by the Feynman diagram in
Fig. 5.

Tuning (e.g. vector vs axial-vector)

Preferential  coupling to µ and p

No UV completion?

boson that coupled to muons (but not to W’s or ν’s), with
a coupling chosen to explain the energy splitting deficit
in muonic hydrogen, then its contribution ΓðW → μνVÞ
would exceed the measured width of the W by a large
margin.
However, in a well-behaved and renormalizable

theory, the growth of amplitudes with energy cannot go
unchecked. Unitarity imposes limits on the energy behavior
of scattering amplitudes, and if one is using the conven-
tions of (say) Bjorken and Drell [17] or of Peskin and
Schroeder [18], an amplitude in a single partial wave must
not grow with energy at high energy [i.e., if the amplitude
grows like ðenergyÞn for large energies, then n ≤ 0].
Nonrenormalizable theories are known for their ultraviolet
divergences in loops, but their excessive energy depend-
ence can also appear at tree level in the form of unitarity
violations. A known historical example is the amplitude for
νeν̄e → WþW− in a simple vector boson theory [19]. The
calculation from Fig. 1(a) gives an amplitude that is
asymptotically in a single partial wave that grows like
E2 as the center-of-mass energy E → ∞. The Weinberg–
Salam extension of the theory also has a Z-boson Fig. 1(b),
which is significantly smaller than 1(a) at threshold but
asymptotically cancels the offending energy behavior and
restores perturbative unitarity [20]. A general study by
Llewellyn Smith has shown that the need to satisfy unitarity
bounds leads to a Yang–Mills structure for many theories
involving vector bosons [21].
In this paper, we consider new vector and (when needed)

axial-vector bosonic interactions that couple to the muon
and the proton but do not couple or couple weakly to the
electron and most other particles. Again, if this is all we
have, the result of Karshenboim et al. shows that the region
of parameter space which solves the proton radius problem
does not occur in the allowed parameter space given by the
known decay of theW. Inspired by Refs. [20,21], we add an
additional triple-boson vertex in the Lagrangian, giving an
interaction involving the standardW-boson, the new vector
particle ϕV , and a further vector boson with the same mass
as theW. We call this newest boson a “shadowW,” denoted
Ws with mðWsÞ ¼ mW . We also include, when needed,
a corresponding axial vector triple boson interaction,
involving the shadow Ws, the ordinary W, and the ϕA.
The inclusion of the Ws makes the ϕ interactions gauge
invariant or current conserving, arguably fixes the

nonrenormalizability of the original interaction, and, as
we shall show, definitively pushes the constraints on the
couplings due to W decay far away from the coupling
strength parameter region necessary to solve the proton
radius problem. Thus, it can be a plausible candidate for a
BSM solution to the proton radius problem.
We note that a current conserving theory with massive

bosons (ϕV and ϕA) and shadow W’s gives high energy
results, e.g., for radiative corrections to W decay, very
much like a theory with a massive scalar boson ϕs plus,
when needed, a corresponding pseudoscalar boson ϕp. We
briefly display such a scalar theory and show that decays
of the W involving such a scalar and pseudoscalar do not
restrict the necessary parameter space needed for solving
the proton radius problem with scalar exchanges.
We should also note that, though our theory is well

behaved and seems likely to be renormalizable (as argued
by Llewelyn Smith [21]), it is not yet a full theory
embedded into the standard model (SM). Further work
will be required to show how such a theory can be
embedded into the SM. For now, we simply consider
our theory as a phenomenological application of some
BSM physics, containing features that a full theory must
contain and controlling the high energy behavior of
scattering and decay amplitudes.
In the following, the bulk of our work concerns the new

vector or axial vector bosons and is described in Sec. II. We
also include some comments on why the corresponding
radiative corrections to Z → μþμ− decay are innocuous.
Results for the scalar case are given in a short Sec. III, and
conclusions are offered in Sec. IV.

II. VECTOR THEORY

We start with an interaction Lagrangian similar to
Ref. [12] where ϕV interacts with a muon (and proton)
via the explicit vector coupling Cμ

V (Cp
V) and where ϕA

interacts with a muon (and proton) through the axial vector
coupling Cμ

A (Cp
A). For brevity of notation, it is understood

that ϕ without a subscript represents either ϕV or ϕA in this
section. We also include an additional three-boson inter-
action [21] term involving the ϕ, the ordinaryW, and a third
boson, with coupling strength equal to Cμ

V (or Cμ
A) as is

necessary to make the decay W → μνϕ gauge invariant.
The third boson is the shadow W, denoted Ws, which
couples to the muon in the same manner as the W and
has mWs

¼ mW .
The new interaction terms in the Lagrangian are

Lint ¼ − ϕV
λ ½C

μ
V ψ̄μγλψμ þ Cp

V ψ̄pγλψp&
− ϕA

λ ½C
μ
Aψ̄μγλγ5ψμ þ Cp

Aψ̄pγλγ5ψp&

− iCμ
VϵijkW

i
αW

j
β∂αWk;β þ ifCμ

Atermsg

−
g

2
ffiffiffi
2

p ψ̄μγλð1 − γ5ÞψνW−
s;λ þ H:c:; ð1Þ

FIG. 1. The illustrative process νν̄ → WþW−.
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1. the proton radius puzzle is solved,
2. it is too early to use the new experiment as a replacement for many others,
3. new physics may coexist with the CODATA value and the new experiment result.

It is tempting to accept the first scenario, however it defies the results of decades of the electron-
proton scattering experiments. On the other hand, the preliminary nuclei radii from laser spec-
troscopy of µ 4He+ and µ 3He+ [38] agree with the electron-nucleus experiments [39,40]. The 
PRad experiment [41–43] may shed some light on this direction. For the second approach, one 
may argue that the measurement of 2S − 4P transition frequency is very difficult because of 
quantum interference effects that involve the details of the experimental setup. It is desirable 
to have a second experiment on regular hydrogen for this transition. Moreover, a more recent 
electron hydrogen experiment [44] on the 1S − 3S transition finds a radius in agreement with 
the CODATA value and earlier hydrogen spectroscopy measurements. For the third approach, 
the true value of proton radius may lie within 3 standard deviations of the new experiments and 
the old CODATA value, and the muonic hydrogen experiments still signal new physics. In other 
words, the existence of a new scalar meson may not conflict with any of the experiments. We 
examine the latter two possibilities here.

This paper is organized as follows: Sec. 2 discusses the Lagrangian, introducing φ couplings to 
u and d quarks. A possible UV completion is discussed. The ηπ0φ vertex is discussed in Sect. 3. 
Sec. 4 presents the φ and η decay rates. Sec. 5 revisits the beam dump experiments. Sec. 6 and 
Sec. 7 show the new exclusion region obtained by different η decay channels. Sec. 8 discusses 
third scenario which the new physics coexists with the new regular hydrogen experiments and 
the old CODATA value. A conclusion is given in Sec. 9.

2. Lagrangian

In our previous work, the Lagrangian involved interactions between the φ and nucleons. This 
is not sufficient to study effects involving mesons. Coupling between the φ and quarks is exam-
ined here.

2.1. φ couplings to u and d quarks

Here we use a simplified Lagrangian including the new boson φ in the mostly plus metric:

Lφ ⊃ −1
2
(∂φ)2 − 1

2
m2

φφ2 + eεf φψ̄f ψf (1)

where f is the flavor index, εf = gf /e, e is the electric charge, and ψf is the fermion field 
(quarks and leptons) in the SM. The couplings to the neutron, εn, and proton εp are given by

εp = 2εu + εd, εn = 2εd + εu. (2)

The Lamb shift in muonic hydrogen fixes εµ and εp to have the same sign, therefore, we choose 
εµ and εp to be positive, and εn and εe are allowed to have either sign. From our previous work 
[12,45], the allowed values of εp and εn are shown in Figs. 1 and 2 between the solid black, 
dotted red, and dashed blue lines. Since εn can take either sign, we present εn as a ratio to εp . 
The allowed values of εµ are shown in Fig. 3. We can find the allowed regions of εu and εd in 
Fig. 4 and 5, using εp and εn in Figs. 1 and 2.

  Mass:                     160 keV - 6 MeV


  Couplings: "µ ⇠ "p ⇠ "e ⇠ 10�3
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Fig. 11. Decay rate of η → π0φ∗ → π0γ γ (shaded region is allowed to decay at 95% CL). The decay width with a 
superscript f indicates the process decaying through f fermion loop. The solid blue, dashed green, dotted red, and 
dotted dashed yellow lines are η → φγ γ through u quark, d quark, muon, and electron loops. The horizontal gray line 
is the observed decay width. The vertical line indicates where the decay rate of η → πγ γ through muon loop channel is 
greater than observed value plus 3σ .

Fig. 12. Exclusion plot for εp (shaded region is excluded at 95% CL). See caption of Fig. 1 for more details.

ruled out with the new result and this means that the scalar coupling to the neutron is zero, i.e.
εu = −2εd .

At first glance, one might think that the effect of new physics is approximately halved, there-
fore the constraint should be less strict. This intuition is not correct. Comparing with the results 
in Sec. 7, we see that the upper bound of mφ becomes smaller. The problem is that the effect 
of εn should be included carefully. To correctly analyze it, examine Eq. (36). The η → π0γ γ

decay rate is proportional to (εu − εd)2 (this factor comes from the ηπ0φ vertex). In the previous 
scenario, εd can be positive (see Fig. 5), so (εu − εd)2 can be smaller than ε2

u; in this section, εd
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An idealized experiment might look like this: 

Electron 
Beam T 

%Ai5 Proton 

In such an experiment the electron loses energy to the proton in the collision, 
so the final electron energy is less than the initial energy: 

E’ = E 

1 + 9 sin2 ef2 
(2) 

The momentum transfer (squared) is 

Q2 = 4 Eo E’ sin2012 . 

The cross section can be written 

(3) 

do 
-= 
dR 

+ 2rG2,, tan2012 1 (4) 

where 

T = Q2/4 M2 

The form factors GE and GM describe the st.ructure of t.he proton charge 
and magnetic moment. Roth are functions of only the momentum transfer, Q2, 
and at Q2 = 0, 

GE Ip2=o = 1 , GM lQz=o = “P 

The cross section[4] is the most grneral form for the scattering of (unpolnr- 
iced) high energy electrons from protons in t,he one-photon approximation. The 
simplicity of this expression is matched by the simplicity of the experiments, as 
shown in the figure above. The experiments measure the fraction of the electrons 
in a beam that are deflected through an angle 6 in their passage through the 
hydrogen target. 

The first electron-proton scatt,ering experiments of this kind were carried out 
at the lligh Energy Physics Laborat.ory on the Stanford campus in 1953. In that 
laboratory a travelling-wave linear accelerator powered by klyst,ron amplifiers 
produced beams with an average current of about 1 microampere at energies of 
several hundred MeV. The early experiments were performed using a portion of 
the machine and a CII;, target.L4] A SC h ematic view of the scattering apparatus is 
shown in Fig. I. In t.he data from those cxprrimcnts. the elast.ic scattering from 
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Figure 1. A schematic view of electron scattering experiment with a 180” 
magnetic spectrometer to measure the energy of the scattered electrons. 
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puzzle from these analyses of electron-proton scattering
data. New and further improved measurements from lep-

ton scattering are highly desirable, which we describe in
Section VII.

FIG. 19 (Color online) The proton charge radius values determined from electron scattering experiments since 2010 together
with the results from the various analyses of electron-proton scattering data (see text) (figure credit: Jingyi Zhou).

VI. MODERN SPECTROSCOPIC MEASUREMENTS

A. Muonic hydrogen spectroscopic experiments

The first determination of the proton charge radius us-
ing muonic hydrogen atoms was carried out by Pohl et
al. (Pohl et al., 2010) at the Paul Scherrer Institute
(PSI) by measuring the transition frequency between the
2SF=1

1/2 and the 2PF=2
3/2 states at wavelengths around 6.01

µm using pulsed laser spectroscopy, see Fig. 20. The
muonic hydrogen atoms were produced by stopping neg-
ative muons in a hydrogen gas target with a pressure of
1 hPa (1 mbar) at the ⇡E5 beam-line of the proton ac-
celerator at PSI. The muonic atoms produced are in the
n ⇡ 14 excited state, which then decay with about 1%
probability to the 2S metastable state, while the major-
ity (99%) decay to the 1S ground state. The lifetime of
the long-lived 2S state at 1 hPa pressure is 1 µs. A 5-ns
pulsed laser with a wavelength tunable around 6 µm is
incident and illuminating the target volume about 0.9 µs

after the muons reach the target. The laser wavelength
is scanned through the resonance of the 2S ! 2P tran-
sition. Upon the excitation, the 2P state with a lifetime
of 8.5 ps will decay to the 1S state via emission of the
1.9-keVK↵ x-ray. Therefore, in this pulsed muonic atom
laser spectroscopic measurement, the resonance curve is
recorded by the coincidence of the 1.9-keV x-ray and the
laser pulse as a function of the laser wavelength. A co-
incidence time window of 0.9 to 0.975 µs is chosen, i.e.
0.9 µs after the muons enter the H2 target, and the 75-ns
window corresponds to the confinement time of the laser
light within the optics surrounding the target.

The resonance frequency for the transition between
the 2SF=1

1/2 and the 2PF=2
3/2 states was measured to be

49881.88 (76) GHz (Pohl et al., 2010), which gave a pro-
ton charge radius value of rEp = 0.84184(67) fm based
on the state-of-the-art QED calculations. In a follow-up
paper by the CREMA collaboration (Antognini et al.,
2013a), the tunable laser wavelength was scanned from
5.5 to 6.0 µm, and in addition to the original transition

Gao and Vanderhaegen, arXiv:2105.005 
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Proton charge radius [fm]
0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

CODATA-2010

H spectroscopy

scatt. Mainz

scatt. JLab

p 2010µ

p 2013µ

σ6.7 

arXiv:2205.10076
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Dispersion-based analysis
Allow for a consistent description of all 
data (including neutron) in the space- and 
timelike regions based on fundamental 
principles. 


Always led to a small proton charge 
radius
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H/D shift: r2d � r2p =3.820 07(65) fm2

µd : rd = 2.1256(8) fm

�
) rp = 0.8356(20) fm

Advances in nuclear-structure 
contributions in H, D and D atoms 

removed a   tension
μ

2.5σ

D and H-D  isotopic shiftμ

Pachucki et al., PRA 97, 062511 (2018) 

Kalinowsiet al., PRA 99, 030501 (2019) 

Lensky et al.,  PLB  835 (2022) 137500

Lensky et al., EPJA 58, 224 (2022)

 

µ-

d

No BSM 
coupling to n
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New measurements in H

Values have moved towards , 
yet, some deviations still exist.


Deviations tends to decrease as n 
increases. 

rp(μH)

A Yukawa potential with a 

length scale of 
 

decreases the deviations

∼ 34a0

J.P. Karr

P. Yzombard

E. Hessels
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extracted line center w0 will not be shifted with
respect to its unperturbed value. In contrast to the
OBE simulation, the influence of the experimental
geometry can be precisely extracted from the
spectroscopy data, rather than required as an
external input.
To also take into accountGaussian broadening

mechanisms, such as the atomic beam diver-
gence in our experiment detailed below, the ex-
panded line shape (Eq. 3) is convolved with a
Gaussian of width GG (full width at half max-
imum). Again omitting the small linear term
proportional to a, this yields what we in the
following will refer to as Fano-Voigt line shape
(17, 31, 32)

F ðwÞ ¼ AfRe½wðzÞ% þ 2hIm½wðzÞ%g ð5Þ

where w(z) denotes the Faddeeva function of
the argument z ¼ 2

ffiffiffiffiffiffiffi
ln2

p
½ðw' w0Þ þ iG=2%=GG.

Analogous to Eq. 3, the Fano-Voigt line shape
consists of a Voigt profile, corresponding to the
convolution of the Gaussian and the Lorentzian
profile, and a dispersive-shaped perturbation.
The asymmetry parameter h = bG/4C measures
the amplitude of this perturbation relative to the
observed line strength A and directly gives the
line shift, in units of the observed linewidth, that
is canceled by including the perturbation.
Additional line shifts caused by the interplay

of quantum interference with both the back de-
cay of the 4P state to the initial 2S state and the

depletion of this initial state are not fully ac-
counted for by the Fano-Voigt line shape but
could in principle be removed by using an even
more sophisticated line shape. However, those
additional shifts are considerably smaller and
less geometry-dependent than the shift removed
by the Fano-Voigt line shape. Thus, we apply
small model corrections to the data [1.3(2) kHz
for the most affected 2S-4P1/2 transition] deter-
mined by fitting the Fano-Voigt line shape to the
OBE simulations (17). Note that these additional
shifts also have opposite signs for the twomutually
perturbing resonances. Although the bulk of the
broadening caused by the atomic beam diver-
gence and saturation effects is well described
by the Fano-Voigt line shape, small deviations
symmetric about the line center remain. In com-
bination with an imperfectly symmetric experi-
mental sampling of the resonance about its center,
this can lead to a sampling bias in the deter-
mined line centers.We reduce this sampling bias
by selectively removing a small amount of exper-
imental points to enforce fair sampling (17). The
remaining sampling bias is estimated with a
Monte Carlo simulation using the experimen-
tal sampling and signal-to-noise ratio, leading
to a maximum correction of 0.8(0.7) kHz.

Experimental setup

To measure the 2S-4P transition frequency and
study the effect of quantum interference, we use

the dedicated setup depicted in Fig. 3 (33–35). A
cryogenic beam of H in the metastable 2S state
obtained from Doppler-free two-photon excitation
of the 1S-2S transition is crossed at right angles
with radiation from the spectroscopy laser at
486 nm, driving the 2S-4P transition. The hyper-
fine splitting in the 2S state is resolved in the 1S-2S
excitation, so that the atoms are almost exclusively
prepared in the 2SF¼0

1=2 sublevel. From this state,
only two dipole-allowed transitionsmay be driven
as depicted in Fig. 2, either to the 4PF¼1

1=2 state (2S-
4P1/2 transition) or to the 4PF¼1

3=2 state (2S-4P3/2
transition). The linear polarization of the spec-
troscopy laser is oriented at angle qL to the hori-
zontal and defined by a polarization-maintaining
(PM) fiber (intensity polarization extinction ratio
200:1). The polarization can be rotated about the
laser beam axis by either making use of the two
orthogonal PM axes of the fiber or rotating the
fiber itself.
To observe the effects of quantum interference

more clearly, we have split our large solid angle
detector by a vertical wall along the spectroscopy
laser beam, creating two detectors that observe
the fluorescence of the 4P state from different
directions, but with the same solid angle. The
Lyman-g extremeultraviolet photons emitted upon
this rapid decay of the short-lived 4P state to the
1S ground state release photoelectrons from the
graphite-coated innerwalls of the detectors, which
are counted by two channel electron multipliers,
CEM1 and CEM2; the output of these multipliers
is our signal.

Doppler shift

The mean thermal velocity of atoms in our cryo-
genic beam is about 300 m/s, 10 times smaller
than in previous experiments. In addition, a high
level of compensation of the first-order Doppler
shift is achieved by using an active fiber-based
retroreflector specifically developed for this ex-
periment (36). The transition is driven by two
phase-retracing antiparallel laser beams, leading
to Doppler shifts of opposite sign and equal am-
plitude for atoms being excited by the respective
beams. To verify this scheme, we probe atomic
samples with mean velocities ranging from 295
down to 85m/s. These low velocities are achieved
by quickly switching off the 1S-2S excitation light
at 243 nm and letting the fastest 2S atoms escape
before acquiring data (time-of-flight resolved de-
tection scheme). Any residual first-order Doppler
shift can be constrained by extracting the rate of
change of the observed transition frequency with
the mean velocity of the atoms interrogated for
each delay time. We extract this Doppler slope
from the same data used to determine the tran-
sition frequencies presented here and find it to
be compatible with zero for each transition after
averaging all our data. The corresponding fre-
quency uncertainty is found by multiplying the
Doppler slopewith themean velocity of all atoms
interrogated, 240 m/s, giving an uncertainty of
2.9 and 2.8 kHz for the 2S-4P1/2 and the 2S-4P3/2
transitions, respectively. The two antiparallel laser
beams weakly couple different momentum eigen-
states of the 2S atoms and can drive Raman

Beyer et al., Science 358, 79–85 (2017) 6 October 2017 4 of 7

Fig. 3. Experimental apparatus (not to scale). A preparation laser at 243 nm is used to excite
hydrogen atoms that emerge from the cold copper nozzle (5.8 K) from the ground state to the 2S state.
The 2S-4P transition is driven with the spectroscopy laser at 486 nm. This laser is coupled to an
active fiber-based retroreflector [consisting of polarization-maintaining (PM) fiber, collimator, and high-
reflectivity (HR) mirror] oriented perpendicular to the atomic beam; this setup provides a large
suppression of the first-order Doppler effect (36). In the dark phases of the chopper wheel, Lyman-g
fluorescence photons (g) emitted upon the rapid 4P→1S decay are detected via photoelectrons (e−)
by channel electron multipliers CEM1 and CEM2. The two detectors are separated by a vertical wall
along the direction of the 486-nm light propagation. The 2S-4P excitation region is shielded from
stray electric fields (with dedicated meshes) and magnetic fields (with magnetic shielding, not
shown), resulting in stray fields below 0.6 V/m and 1 mG, respectively (17). The blue double-sided
arrow labeled

→
E indicates the electric field of the 486-nm spectroscopy laser with orientation qL

against the horizontal.
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Muonic atoms as  possible probes of  BSM physics 


Sensitive to new forces especially in the MeV-GeV mass range.


 Sensitive to flavour violating coupling


Can be used also to bound BSM physics coupling to n

µ-

4He++

e-

µp spectroscopy

p

µ-

H spectroscopy

p

e--p scattering

 H 2 
e- p

e⁻
ΔE’ΔE

µ-

d

C. Peset

Y. Stadnik

Novel effective field theory approaches 
to low-energy measurements
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A simplified story (neglecting least square 
adjustment )

Slightly muonic-atom centric approach
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Muonic hydrogen

(δ = 1 × 10−5)
E2S−2P(μH) ≈ QED + κr2

p+NS
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Muonic hydrogen

Extract 

proton radius

Input from 

proton structureE2S−2P(μH) ≈ QED + κr2

p + NS +3PE

δ = 4 × 10−4

Benchmark for hadron 
theories
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Hydrogen

Muonic hydrogen

Extract 

Rydberg constant

δ = 8 × 10−13

Input from 

proton structure

R∞ =
α2mec

2h

Fundamental constant 
needed for precision 
predictions in  atoms, 

molecules, ions.

(δ = 4 × 10−15)

+3PEE2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′￼+ k′￼r2
p
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Hydrogen

Muonic hydrogen

The idea of the experiment

(δ = 2.5 × 10−13)

(δ = 4 × 10−15)

(δ = 1 × 10−5)

Grinin et al. Science 370(6520):1061–1066 (2020)  

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′￼+ k′￼r2
p

E1S−3S(H) ≈
8
9

R∞ + QED′￼′￼+ k′￼′￼r2
p
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Hydrogen

Muonic hydrogen

δ ∼ 1 × 10−12

Test of H theory

Test of bound-states QED


Input from 

proton structure

p
e⁻

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′￼+ k′￼r2
p

E1S−3S(H) ≈
8
9

R∞ + QED′￼′￼+ k′￼′￼r2
p

Strong BSM limits
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Hydrogen

Muonic hydrogen

Combine

Test 

proton structure

Theoretical tools

dispersive

sum rules

chiral perturbation th.

lattice QCD

Nuclear structure 
contribution                      

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′￼+ k′￼r2
p

E1S−3S(H) ≈
8
9

R∞ + QED′￼′￼+ k′￼′￼r2
p

+3PE
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The radius extraction is facilitated in e-He scattering

Hydrogen

Muonic hydrogen

HD+

<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA="></latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

δ = 𝒪(10−11 − 10−12)

(δ = 4 × 10−15)

(δ = 1 × 10−5)

p d

Karr et al., Springer Proc. Phys. 238:75–81 (2020) 

Alighanbari  et al., Nature 581(7807):152–158  (2020) 

Patra et al., Science 369(6508):1238–1241 (2020)

HD isotope 
shift

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′￼+ k′￼r2
p
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Hydrogen

Muonic hydrogen

HD+

<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA=">AAAC6HicbVLdbtMwFHbC3+gG6+CSG4tpWieFKmFo4wap/ExCaBcbottEU0WO4ySmjmPZTllk5R24AnHLWyHxBrwETlohunEkW5++8+NzvuNYMKq07/903Bs3b92+s3a3t75x7/5mf+vBmSorickYl6yUFzFShFFOxppqRi6EJKiIGTmPZ69b//mcSEVL/kHXgkwLlHGaUoy0paL+/GgQ8gqGHjwOJc1yjaQsP0PL7Xbk7t6L91FIeaprGBZI57Iwp0dvIrP/JC6TumkGIWIiRx6EYSoRNkVEGnuJxvtLiJZILCEj0V7JXi/qb/tDvzN4HQRLsD16+fV49E7+Pom2nI9hUuKqIFxjhpSaBL7QU4OkppiRprcTVooIhGcoIxMLOSqImppOoQbuWCaBaSnt4Rp2bO+fDIMKpeoitpHtkOqqryX/55tUOn0+NZSLShOOFw+lFYO6hK3cMKGSYM1qCxCW1DYLcY6sLtouZaVpgxHHhDUr5WUWe1DNs24aDyZzKtRyssvFaKs1MolETvGlrZKQ1P6JLsgUdYLkLJOE8MbYmo3xh0Er+LN96DftNoKr2l8HZ0+HwcEwOLVreQUWtgYegcdgAAJwCEbgLTgBY4DBL8d11p0N95P7xf3mfl+Eus4y5yFYMffHHwvF6u0=</latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

Penning traps

ωp

ω12C5+
⋯g-factors,

Electron g-2: the trap frequencies

A. Antognini, Low-energy particle physics, g-2, ETH Zurich – p. 40

δ = 𝒪(10−11 − 10−12)

(δ = 4 × 10−15)

(δ = 1 × 10−5)

δ ∼ 𝒪(10−11)

EMMI 201919.11.2019

Penning trap
Requirements: 
• Single, cold ion 

• Homogeneous magnetic field:  4 T 
• Cryogenic temperature:  ~ 4.2 K 

• Long storage times:  months 

• Extremely high vacuum: 10-17 mbar

~ 

~ 
~ 

B

UCE1

UCE1

UCE2

URE

UCE2

Heiße et al. Phys. Rev. A 100(2):022518 (2019) 

Sturm et al. Nature 506(7489):467–470 (2014) 

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′￼+ k′￼r2
p HD isotope 

shift
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The radius extraction is facilitated in e-He scattering

Hydrogen

Muonic hydrogen

δ ∼ 10−11

Test of HD+ theory

Test of 3-body QED


HD+

<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA="></latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

Penning traps

ωp

ω12C5+
⋯g-factors,

p d

Antognini, Hagelstein, Pascalutsa, arXiv:2205.10076

Strong BSM limits


E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′￼+ k′￼r2
p
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Hydrogen

Muonic hydrogen

HD+
<latexit sha1_base64="bWN7qTNH5H8WHznxPa0jnI264RA="></latexit>

E(⌫ L ! ⌫0 L0) = R1QED3�body(↵,
me

mp
,
mp

md
, rp, rd)

Extract 

me/mp ratio

δ = 2 × 10−11

Test of bound g-factors

Bound-electron g-factor

[W. Quint]

A. Antognini, Low-energy particle physics, g-2, ETH Zurich – p. 62

Combining  measurements in 𝛍p, H, HD+ and Penning-traps 

δ ∼ 4 × 10−11

E2S−2P(μH) ≈ QED + κr2
p + NS

E1S−2S(H) ≈
3
4

R∞ + QED′￼+ k′￼r2
p

N. Schwegler

S. Sturm
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ge

2
=

νs

νc
= 1 +

νa

νc

aexp
e =

ge − 2
2

= 0.00115965218073(28)

δ(ge) = 3 × 10−13

atheory
e = C1( α

π ) + C2( α
π )

2
+ C3( α

π )
3

+ C4( α
π )

4
+ C5( α

π )
5

+ aweak + ahad + ⋯

Compare experiment to theory

aexp
e = atheory

e (α)

δ(α) = 2 × 10−10

aexp
e = atheory

e (α)

α2 =
2R∞

c
mX

me

h
mXTest g-factor theory


wc

ws

B B

S
e

δ ∼ 3 × 10−13

Extract 

Fine structure constant

δ ∼ 2 × 10−10

Experiment Theory

μp+H

Hanneke et al, PRL 2008, 100, 120801 

Aoyama et al, PRD 2018, 97, 036001

Parker et al., Sciece 360, 191-195 (2018) 

Morel et al., Nature 588, 61-68 (2020) 

Electron g-2: the trap frequencies

A. Antognini, Low-energy particle physics, g-2, ETH Zurich – p. 40

P. Cladet

Xin Fang
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Self-consistent extraction of spectroscopic bounds on light new physics
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Boulevard François Mitterrand, F-91000 Evry, France
5Institute for Advanced Research & Kobayashi-Maskawa Institute for the Origin
of Particles and the Universe, Nagoya University, Nagoya 464–8602, Japan

6KEK Theory Center, IPNS, KEK, Tsukuba 305–0801, Japan
7CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing 100190, China
8LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
9Physics Department, Technion – Israel Institute of Technology, Haifa 3200003, Israel

10Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221,USA

Fundamental physical constants are determined from a collection of precision measurements of
elementary particles, atoms and molecules. This is usually done under the assumption of the Stan-
dard Model (SM) of particle physics. Allowing for light new physics (NP) beyond the SM modifies
the extraction of fundamental physical constants. Consequently, setting NP bounds using these
data, and at the same time assuming the CODATA recommended values for the fundamental phys-
ical constants, is not reliable. As we show in this Letter, both SM and NP parameters can be
simultaneously determined in a consistent way from a global fit. For light vectors with QED-like
couplings, such as the dark photon, we provide a prescription that recovers the degeneracy with
the photon in the massless limit, and requires calculations only at leading order in the small new
physics couplings. At present, the data show tensions partially related to the proton charge radius
determination. We show that these can be alleviated by including contributions from a light scalar
with flavor non-universal couplings.

I. INTRODUCTION

Precision measurements of atomic and molecular prop-
erties play a dual role in fundamental physics. On the
one hand, assuming the Standard Model (SM) of parti-
cle physics, these are used to determine two of the SM
parameters, the fine-structure constant, ↵, and the elec-
tron mass, me (through the Rydberg constant R1 ⌘

↵
2
mec/(2h)), along with a number of other observables

such as the charge radii and relative atomic masses of the
proton and deuteron. An example is the determination
of fundamental physical constants by the Committee on
Data of the International Science Council (CODATA) [1].

On the other hand, precision measurements can be
used to search for new physics (NP) beyond the SM. Such
searches have been conducted using measurements of sin-
gle particle observables [2–4], atomic systems [5–10], and
molecular systems [11–14], see [15] for a review. The

⇤ cedric.delaunay@lapth.cnrs.fr
† karr@lkb.upmc.fr
‡ teppeik@kmi.nagoya-u.ac.jp
§ j.c.j.koelemeij@vu.nl
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presence of NP would manifest itself as a discrepancy
between measurements and theoretical SM predictions.
The di�culty here is that in many cases the SM pre-
dictions depend on the fundamental physics parameters,
which in turn were extracted from data by CODATA un-

der the assumption that the SM is correct, and no NP

exists. In general, the presence of NP would a↵ect the
extraction of fundamental constants, possibly reducing
the claimed sensitivity of NP searches. This subtlety is
more often than not ignored in the literature.

In this Letter we propose and carry out a self-
consistent determination of constraints on light NP mod-
els by performing a global fit, simultaneously extracting
the SM and NP parameters. We go well beyond the previ-
ous studies [5, 6, 16], which were performed only on sub-
sets of data. We pay special attention to the potentially
problematic limit of massless NP. The challenge is that
the SM predictions are calculated to a higher perturba-
tive order than the leading order (LO) NP contributions,
which can then lead to incorrect limiting behaviour for
very light NP. Below, we provide a prescription, valid to
LO in NP parameters, that corrects for such mismatches
in the theoretical predictions, and leads to the proper
massless NP limit.

The global fit shows several 3� (3 standard deviations)
discrepancies between observables and predictions, as-
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FIG. 1. The 95% CL bounds on the NP coupling constant ↵�

as a function of the new boson’s mass m� for the benchmark
NP models of Sec. II, as indicated. Other model-dependent
constraints may apply (see text).

eVNP. In the m� ! 0, qi ! Qi limit the potential eVNP

vanishes, and all theory predictions are the SM ones, but
shifted by ↵ ! ↵ + ↵�. For massive dark photon with

m�a0 ⌧ 1 the leading e↵ect of eVNP is parametrically
eONP / m

2
�
. Note that for massless B � L the potential

ṼNP vanishes in hydrogen but not in deuterium where
eONP / qn, thus breaking the degeneracy between the
SM and NP contributions when m� ! 0.

For light scalars there is no degeneracy with QED in
the massless mediator limit; it is lifted by relativistic cor-
rections. We can use directly the state-of-the-art SM
predictions, and simply add to them the NP contribu-
tion due to the potential (2) at LO, without any special
treatments, see also Sec. S7.

V. RESULTS

First, we perform the control fit, i.e., the least-squares
adjustment assuming SM, based on the CODATA18
dataset with inflated experimental uncertainties when
there are tensions in the data [1], see also Sec. S2. Re-
sulting �2 per degree-of-freedom (dof) is �2

SM/⌫dof ' 0.95
(⌫dof = 78�44 = 34), indicating an overall good descrip-
tion by the SM, and the use of correct expansion fac-
tors. The output gSM values and relative uncertainties
(see Table S5) are in excellent agreement (. 0.2�) with
the latest CODATA recommended values [1], validating
our procedure.

Next, we perform adjustments based on the DATA22
dataset, assuming either the SM or one of the NP bench-
mark models in Sec. II. We do not inflate experimental
errors, since mild tensions in the data could be a hint of
NP. The SM-only hypothesis still describes the data rel-
atively well, with �

2
SM/⌫dof ' 1.4 (⌫dof = 102�62 = 40),

FIG. 2. The constraints on ULD scalar in the ↵�,m� plane,
with purple-shaded 1, 2, 3, 4� CL regions favored by the
DATA22 dataset (black dot is the best-fit point). Exclusions
are by SN1987a [50, 51] (below the pink line, absent if � in-
visible decay dominates), NA62 K+ ! ⇡+Xinv search [52]
(green, the dashed line is a naive NNLO estimate), stellar
cooling [53] (gray), and E137 [54, 55] (between yellow dashed
lines, absent if � invisible decay dominates).

despite known tensions in the proton charge radius puz-
zle data and the recent hydrogen 2S1/2 � 8D5/2 transi-
tion [20].
Figure 1 shows the 95% confidence level (CL) up-

per bounds on ↵� as function of m� for the NP bench-
mark models, Sec. II. The strongest exclusion is always
reached around m� ⇠ a

�1
0 ⇠ 4 keV, and stays roughly

constant for lighter m� (except for dark photon due
to degeneracy with QED in the m� ! 0 limit, see
Sec. IV). Deuterium observables translate to a ⇠ 2⇥
stronger bound on B � L at m� ⇠ a

�1
0 , compared to

dark photon. The significantly stronger bounds on the
Higgs portal and hadrophilic scalar for m� . 10 keV are
due to the ⇠ pmp/me ' 500 enhancement in inter-
nucleon interactions (compared to electron–nucleon po-
tential), a↵ecting the HD+ observables. For heavier NP,
m�a0 & 1 (mµ/me) in hydrogen (muonic hydrogen),
the interaction is point-like, with suppressed electron
(muon) wave function overlap, and the bounds decou-
ple as / 1/m2

�
(and more quickly for hadrophilic scalar).

The bounds are stronger for Higgs portal and ULD scalar
due to ⇠ mµ/me ' 200 enhanced e↵ects in muonic hy-
drogen.

For m�a0 & mµ/me the Higgs portal and ULD scalar
are statistically preferred over the SM at the ⇠ 4� and
⇠ 5� level, respectively. Figure 2 shows the preferred
region for the ULD scalar, around the best-fit point,
m� = 300 keV and ↵� = 6.7 ⇥ 10�11. This NP hint
is supported mostly from the recent measurements of
the hydrogen 2S1/2 � 8D5/2 and 1S1/2 � 3S1/2 transi-
tions [20, 21], as well as muonic deuterium, cf. Sec. S5.
While these tensions between data and the SM predic-

5
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mϕ=300keV
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CODATA18 (no expansion factors)
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FIG. 3. The 68% CL regions for simultaneous determina-
tions of the Rydberg constant R1 and the proton radius rp
assuming either the SM-only hypothesis (gray) or including
putative NP contributions from a 400 keV Higgs portal scalar
(blue) or 300 keV ULD scalar (purple). The solid lines use
DATA22 dataset, the dashed (dotted) lines the CODATA18
dataset with (without) errors inflated by expansion factors.
Both R1 and rp are shown in terms of normalized devia-
tions from the central values of the CODATA 2018 analysis,
Ref. [1].

tion are not new, our analysis shows that all tensions
can be significantly ameliorated when including NP in-
teractions due to a single light scalar. The favored NP
mass is close to the (inverse) Bohr radius of muonic
atoms, a�1

0 ⇥ mµ/me ⇠ MeV, due to the large muon-
electron coupling ratio in these models, contrasting with
scalars having weaker or vanishing coupling to muons (see
Sec. S4 and [20]). However, other constraints require the
scalar to have rather a nontrivial pattern of couplings, see
Sec S4A. For ULD scalar the E137 [54, 55] bounds are
evaded since � decays predominantly to an invisible dark
sector. Since � couples to up quarks and not directly to
heavy quarks and gluons, the bound from NA62 search
for K

+
! ⇡

+
� [52] is weakened [51, 56]. Finally, the

minimal ULD model induces a too large contribution to
(g � 2)µ, however this can be suppressed in less minimal
versions with a custodial symmetry [57].

The presence of NP also impacts the determination
of the fundamental constants in the SM. Figure 3
shows the 68% CL determination of rp and R1, sub-
tracting the CODATA 2018 recommended values and

normalizing to respective errors. The SM-parameter
uncertainties increase in the presence of NP and the
central values shift outside the nominal SM ellipse,
shown explicitly in Fig. 3 for the Higgs portal and
ULD scalar model. Because of the degeneracy with
the photon the uncertainty on ↵ in the dark photon
model increases as 1/m2

�
for masses below 10 eV (see

Fig. S7) and eventually becomes comparable to ↵ itself
for m� ⇠ 0.1meV, while ↵+↵� remains well constrained.

VI. CONCLUSIONS

Extracting bounds on light NP from a global fit to
spectroscopic and other precision data requires both SM
and NP parameters to be determined simultaneously.
The possibility of NP contributions changes the extracted
allowed ranges of SM parameters, a change that can be
quite substantial, see Fig. 3. Furthermore, we provided a
prescription to consistently include NP corrections from
light vectors. It requires calculations of NP contribution
only at leading order, and recovers the expected degener-
acy between dark photon and QED in the massless me-
diator limit.
At present, spectroscopic data show tensions that

could either be due to unknown or under-appreciated
systematics, or to light NP. We showed that the ⇠ 4�
anomaly in data can be explained by a flavor non-
universal light scalar model.
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Results for 4He structure and charge radii

rstr(4He) = (1.4748 ± 0.0030trunc ± 0.0013stat) fm

Prediction for 4He structure radius: 

Prediction for 4He charge radius

rC(4He) = (1.6766 ± 0.0034) fm

rexp
C (4He) = (1.67824 ± 0.00083) fm

Krauth et al., Nature 589 (2021) 7843, 527-531 

The μ 4He exp. value is

proton radius value?

r2
C = r2

str + r2
p + r2

DF + r2
n

!24

preliminary, further uncertainty sources under investigation

preliminary, using CODATA 2018 rp and own determination of rn

Filin et al.,  

Eth
LS = 1668.491(7) − 106.209 r2

α + 9.276(433) meV

Eexp
LS = 1378.521(48) meV

rα = 1.6786 (12) fm

µ-

4He++ QED Finite size Nuclear structure

 Filin 

Krauth et al., , Nature 589 (2021) 7843, 527-531 

Pachucki et al., arXiv:2212.13782

Towards consistent treatment 
of the nuclear structure: TPE 

and  radii
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Eth
LS = 1644.348(8) − 103.383 r2

h + 15.499(378) meV

Eexp
LS = 1258.598 (48)exp(3)theo meV

rh = 1.97007 (12)exp(93)theo fm = 1.97007(94) fm .
5

where EHFS < 0 and the numerical values of the last
terms in Eqs. (8-10) arise from the 2P fine and hyperfine
splittings, and include the contribution due to the mixing
of the F=1 levels. These contributions can be calculated
with great precision, because the 2P wave function of the
hydrogen-like muonic He ion has negligible overlap with
the nucleus, resulting in negligible contributions from nu-
clear size and structure corrections.

Note that the two most recent theory papers by
Karshenboim et al., [27] and Pachucki et al. [28] use
di↵erent conventions for the definition of the 2P1/2 and
2P3/2 centroids, which results in di↵ering definitions of
the Lamb shift. To obtain the constant terms in Eqs. (8-
10) we have used the 2P levels calculated by Karshenboim
et al., and modified them to account for the di↵erent
definitions, such that our final result for the Lamb shift
follows the convention of Pachucki et al. (see Methods).

We can solve the system of equations to obtain the
experimental values of the Lamb shift, the 2S HFS und
the 2P fine splitting:

Eexp

LS
= 1258.612( 86)meV (11)

Eexp

HFS
= �166.485(118)meV (12)

Eexp

FS
= 144.958(114)meV. (13)

The experimental value of the fine splitting Eexp

FS

is in excellent agreement with predictions Eth

FS
=

144.979(5)meV [27], demonstrating consistency between
our three muonic transitions measurements on the one
hand, and the correctness of the theory of the 2P levels
on the other. Owing to its much smaller uncertainty and
consistency with measurements, we can use the theory
value of the fine splitting to solve the system of equations
Eqs. (8)-(10) to obtain improved values of the Lamb shift
and 2S-HFS:

Eexp

LS
= 1258.598( 48)exp(3)theo meV (14)

Eexp

HFS
= �166.496(104)exp(3)theo meV . (15)

The theoretical uncertainties are from the ±0.005meV
estimated higher-order corrections to the fine structure
in Ref. [27].

THE HELION CHARGE RADIUS AND THE
ISOTOPIC SHIFT

The theory prediction of the Lamb shift has been re-
cently updated accounting for the contributions of vari-
ous groups. It reads [28]

Eth

LS
(r2h) =1644.348(8)meV � 103.383 r2h meV/ fm2

+ 15.499(378)meV (16)

where the first term accounts for all QED corrections in-
dependent of the nuclear structure, the term proportional
to rh2 accounts for the finite-size correction including

1.94 1.95 1.96 1.97 1.98 1.99
 [fm]

h
helion charge radius r

  

Sick 2014

Piarulli 2013   
Nevo Dinur 2019

LENPIC 2021

He3µ 

FIG. 4. Recent determinations of the 3He nucleus (helion)
charge radius. The dark and light bands indicate the experi-
mental and total uncertainty in our measurement. The value
of Sick of 1.973(14) fm [8] is from the world data on elastic
electron scattering. The other values are recent predictions
from nuclear few-body theory: Piarulli 1.962(4) fm [4, 31],
Nevo Dinur 1.979(10) fm [32], and LENPIC collaboration
1.955(34) fm [33, 34] a

a We obtained this value using the point-proton structure radius
and procedure explained in Ref. [33].

radiative corrections to it, and the last term is a sum
of all higher-order nuclear structure dependent contribu-
tions [2, 29, 30] which are dominated by the nuclear two-
and three-photon exchange contributions (2PE and 3PE,
respectively). Comparing this theory prediction with the
measured Lamb shift Eexp

LS
we obtain the rms charge ra-

dius of the helion

rh = 1.97007(12)exp(93)theo fm = 1.97007(94) fm. (17)

This value is 15 times more precise than the previous best
value from elastic electron-3He scattering of 1.973(14) fm
[8], and in perfect agreement with it (see Fig. 4).
Our value could be further improved by almost an or-

der of magnitude by advancing the predictions for the
two-photon-exchange and three-photon-exchange contri-
butions both for the nucleus and the nucleons [1, 2, 28].
It is interesting to compare this value with the helion

charge radius as obtained from most recent nuclear the-
ories which uses chiral e↵ective field theory to describe
the nuclear interaction and ab-initio methods to solve the
quantum-mechanical few-body problem. Figure. 4 shows
some of the most recent results taken from Ref. [4, 31, 33–
35] depicting an overall satisfactory agreement between
the measured value and the various predictions, and high-
lighting the role of the helion charge radius as benchmark
for precision nuclear theory.
Spectroscopy of ”normal” helium atoms can not yet

provide precise values of the helion and alpha-particle
charge radii, given the present uncertainty of the three-
body atomic theory. Yet, in the isotopic shift, several
cancellations take place in the theory [36] of the energy
levels, so that values of r2h � r2↵ [9–14] can be obtained
where r↵ is the alpha particle (4He) charge radius. The
scattering of the values obtained so far shown in Fig. 5
however reveals some tensions that highlight the chal-
lenges faced by both theory and experiments.

3He++

µ-

QED Finite size Nuclear structure

Pachucki et al., arXiv:2212.13782

Schuhmann et al., arXiv 2305.11679 
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Filin 

Chiral EFT calculation of the nuclear charge radius

Nuclear wave function - based on high-precision chiral EFT interactions

r2
C = (−6) ∂

∂Q2 FC(Q2)
Q=0

Charge radius rC is related to the charge form factor FC(Q)

FC(Q2) = 1
2J + 1 ∑

MJ

< P′ , MJ |J0
B |P, MJ >

Charge form factor FC can be computed (in the Breit frame) as

The matrix element is a convolution of nuclear wave function and charge density operator

 Charge density operator - consistent with chiral nuclear forces

Ψ

J0

J0
B

ΨMJ′ 
ΨMJ

calculated consistently

in chiral EFT

7

Chiral EFT calculation of the nuclear charge radius

Nuclear wave function - based on high-precision chiral EFT interactions

r2
C = (−6) ∂

∂Q2 FC(Q2)
Q=0

Charge radius rC is related to the charge form factor FC(Q)

FC(Q2) = 1
2J + 1 ∑

MJ

< P′ , MJ |J0
B |P, MJ >

Charge form factor FC can be computed (in the Breit frame) as

The matrix element is a convolution of nuclear wave function and charge density operator

 Charge density operator - consistent with chiral nuclear forces

Ψ

J0

J0
B

ΨMJ′ 
ΨMJ

calculated consistently

in chiral EFT

7

Charge  form factor can be computed in the Breit frame as

Using  from H leads to 
[114, 115]. Phillips derived it up to N3LO (that is, up to ν = 0 in our counting)10, while
the first derivation of one-loop corrections, entering at N4LO (ν = 1), has been carried out
in [49] by Kölling et al using the unitary transformation method. A time-ordered
perturbation theory calculation has subsequently appeared in [47]. Within this framework,
the construction of the charge operator up to one-loop necessarily requires the study of
non-static contributions to the chiral OPE and TPE potentials. These corrections that go
beyond the static limit are not uniquely determined off-the-energy-shell, therefore the
specific form of the N3LO (ν = 0) and N4LO (ν = 1) corrections of one- and two-pion
range are found to depend on the off-the-energy-shell prescriptions adopted for non-static
terms in the OPE and TPE potentials, respectively [47]. The ambiguity in the non-static
potential and charge operators is of no consequence, since different forms are related to
each other by a unitary transformation [47], a finding that was first unraveled by Friar
[117] for non-static potentials and charge operators of one-pion range.

In what follows, we refer to figure 5 and list the various contributions to the charge
operator up to corrections of order ν=eQ( 1). The LO (ν = −3) contribution is represented by
the diagram illustrated in panel (a) and corresponds to the non-relativistic IA operator given in
equation (6). In principle, at NLO (ν = −2) there are contributions of one-pion range which,

Figure 5. Diagrams illustrating one- and two-body charge operators entering at LO
( −eQ 3), panel (a), N2LO ( −eQ 1), panels (b), N3LO (eQ0), panels (c)–(e), and N4LO
(eQ1), panels (f)–(o). The square in panel (b) represents the Q m( )2, or v c( )2,
relativistic correction to the LO one-body charge operator (or IA(RC)), whereas the
solid circle in panel (c) is associated with a γπN charge coupling of order eQ (see text
for explanation). Notation is as in figure 2.

10 Note that in the counting utilized by Phillips the IA charge operator at LO is taken to scale as eQ0 as opposed to
−eQ 3 as it is done here, therefore N3LO = QPhillips

3.

J. Phys. G: Nucl. Part. Phys. 41 (2014) 123002 Topical Review

18

Current operator Chiral-based nuclear forces

r2
C = r2

str+(r2
p+ 3

4m2p ) + A − Z
Z

r2
n

Relation between charge and structure radii

Nuclear charge radius can be decomposed into structure, proton and neutron radii

General

r2
d = r2

str(2H)+(r2
p+ 3

4m2p )+r2
nDeuteron

rC(4He) = r2
str(4He)+(r2

p+ 3
4m2p )+r2

n4He

r2
C(3H) + 2r2

C(3He)
3 = r2

str(3H) + 2r2
str(3He)

3 +(r2
p+ 3

4m2p )+r2
nIsoscalar 3N

We focus on isoscalar A=2,3,4 radii

Some applications of the accurate χEFT calculation of the nuclear structure radii:

 — extract proton and neutron charge radii from precisely measured nuclear charge radii

 — predict other nuclear charge radii

19

In Breit frame

Consistent derivation and 
regularization of many body 
forces and nuclear current 

operators + Rel. dynamics + 
isospin breaking+…

11

Nuclear Hamiltonians

– Epelbaum E, Krebs H, Meißner UG. PRL 115, 122301  (2015)

– Ekström A, et al. PRL 110, 192502 (2013)
   Ekström A, et al. PRC 91, 05130(R) (2015)

– Entem DR, Machleidt R, Nosyk Y, PRC 96, 024004 (2017)

– Piarulli M, et al. PRC 91, 024003 (2015)

– Gezerlis A, et al. PRC 90 , 054323 (2014)
   Lynn JE, et. al. PRC 96, 054007 (2017)
   

Li Muli
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He charge radius needed to 
extract the  CPT tests

S. Sturm
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13.06.19 J.J.Krauth 20

Setup for the He+ measurement

Ion trap from PTB:
Collaboration with 
T. Mehlstäubler, P. Schmidt

LaserLaB, Amsterdam

arXiv:1911.08843v1


MPQ, Garching

EPJD (2023) 77


Comb spectroscopy in the XUV

Trapping and cooling

Quantum logic detection

E. Grundeman
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Two electrons are much more than one electron

For some transitions 
there is perfect 
agreement, for others 
perfect disagreement

But this is another story

Clausen et al, PRL 127, 093001 (2021) 

Zheng, et al, PRL 119, 263002 (2017) 

 

 contributions completedmα7

Patkos et al, PRA 103, 042809 (2021) 

Talk Gloria Clausen

Talk Yuri van der Werf
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µ

SciPost Physics Submission

1s

mF  = −1 0 +1
F = 1

F = 0
mF  =  0

ΔE = 182 meV
= 44.3 THz

Ekin≈ 100 meVEkin≈ 5 meV

F = 0

F = 1

ρ11 ρ33

ρ22
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r 
ex

ci
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n

collisional

de-excitation

a) b)

Figure 1: (a) Hyperfine structure of the 1s-state in µp divided into the triplet (F = 1)
and the singlet (F = 0) states depending on the total angular momentum of the muon-
proton system. (b) The three-level system used in the Bloch equations to model the laser
excitation followed by collisional deexcitation with an increase of kinetic energy (Ekin).
Initially all µp atoms are thermalized (average of Ekin ⇡ 5 meV) to the singlet state with
population ⇢11. The laser pulse drives the HFS transition, exciting the µp atoms into the
triplet state with population ⇢22. An inelastic collision then deexcites the triplet state
back to the singlet state converting the transition energy into kinetic energy. This singlet
state with additional kinetic energy is the third level in the optical Bloch equations with
population ⇢33 and Ekin ⇡ 100 meV.

(CREMA) collaboration in recent years has performed laser spectroscopy of the 2s � 2p (Lamb
shift) transitions in muonic hydrogen (µp) [4, 6], muonic deuterium (µd) [8] and muonic he-
lium (µ4He+) [9] and extracted the corresponding nuclear charge radii with an unprecedented
accuracy. The impact of the µp measurements on beyond-standard-model searches, on precision
atomic physics, and on the proton structure can be found in recent reviews [7, 10–12]. Along
this line of research, the CREMA collaboration is presently aiming at the measurement of the
ground-state hyperfine splitting (HFS) in µp with 1 ppm relative accuracy by means of pulsed
laser spectroscopy.

From the measurement of the HFS, precise information about the magnetic structure of the
proton can be extracted [13–23]. Specifically, by comparing the measured HFS transition fre-
quency with the corresponding theoretical prediction based on bound-state QED calculations [5,
13,19,20], the two-photon-exchange contribution can be extracted with approximately 2⇥ 10�4

relative accuracy. Because the two-photon-exchange contribution can be expressed as the sum of
a finite-size (static, elastic) part proportional to the Zemach radius (RZ) and a polarizability part
(dynamic, virtual excitation), its determination can be used to extract separately the two parts: the
Zemach radius when the polarizability contribution is assumed from theory [13,15,16,18,21–25],
and the polarizability contribution when taking RZ from electron-proton scattering or hydrogen
spectroscopy [19,26–28].

In this paper, we calculate the laser transition probability between singlet and triplet sublevels
of the ground state hyperfine-splitting in µp (see Figure 1), accounting for the actual detection
scheme used in the experiments and considering collisional and Doppler effects. This transition
probability is one of the key quantities needed to evaluate the feasibility of the CREMA hyperfine-

3

Measure transition with a relative 
accuracy of δ ≃ 1 × 10−6

See poster O. Kara

Nuber et al., arXiv: 2211.08297
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Provides information on magnetic 
structure of the proton 

where F = 0 or 1 is the total spin, N the anomalous magnetic moment of the nucleus;

GM(0) = 1+N is the value of the magnetic moment in units of Ze�2M . The corresponding

coordinate-space potential is directly proportional to the magnetization density ⇢M(r).
Details on the charge and magnetization densities, and the coordinate-space potentials are

given in Sec. 2 of the Supplement.

The 1st-order contribution, yields the following hfs interval of the nS-level:

E
�mFF�
nS-hfs

= �1 − 2Z↵mr�rM ��EF

n3
+O[(Z↵)6], 12.

where EF is the Fermi energy, and �rM � = 4⇡ ∫ ∞0 dr r3⇢M(r) is the linear magnetic radius.

At the 2nd order, the interference with the eFF potential of Eq. 1, gives:

E
�mFF��eFF�
nS-hfs

= Z↵mr��rM � − rZ�EF

n3
+O[(Z↵)6], 13.

thus cancelling the linear magnetic radius term from the 1st order, and installing instead

the Zemach radius:

rZ = − 4
⇡
� ∞

0

dQ

Q2
�GE(Q2)GM(Q2)

1 + N
− 1� . 14.

The Fermi-energy contribution is not a finite-size e↵ect, as it is already present for a pointlike

nucleus. The leading finite-size e↵ect in the hfs is therefore of order (Z↵)5,
E

f.s.
nS-hfs = −(2Z↵mr�n3)EF rZ. 15.

At this order, also the polarizability corrections begin to appear. We consider them next.

The Fermi energy:
EF =
8(Z↵)4m3

r(1+N )
3mM

2.2. Two-photon exchange and polarizability e↵ects

Figure 4

The 2� exchange (a), with the t-channel (b) and the s-channel (c) cuts. The cyan blobs represent
e↵ects from nuclear excitations.

Thus far, we considered e↵ects which stem from the one-photon exchange and its iter-

ations, such that the nucleus stays intact and in its ground state. There are also e↵ects

coming from nuclear excitations, which can only be assessed through a 2� exchange, see

Fig. 4(a). This description goes beyond the elastic form factors and involves instead the

polarizabilities and inelastic structure functions, as will be seen in what follows.

The 2� exchange in Fig. 4(a) introduces, in general, a correction V2�(p′ − p;p′, p) which
depends on the relative momenta of the initial and final state, p and p

′, as well as the

momentum transfer q = p′−p. These are four-momenta, but the energy e↵ects can safely be

neglected, since they are suppressed by (Z↵)2mr. The dependence on �p� = �p′� is suppressed
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Combined with H 

Test of HFS theory with rel. acc.→ < 10−8

Sensitive especially to axial-vector BSM contributions

J
H
E
P
0
5
(
2
0
2
2
)
0
0
2

resuming all the series expansion in 1/mφ in the heavy mass theory. Note that for Z > 1,
g(N)
X = Zg(p)X .

We observe that a scalar particle gives an opposite sign contribution with respect to a
vector dark force for a fermion-fermion potential. Hence, we could in principle envision a
scenario where the LS contributions are canceled among different particles. Note that this
is different with respect the g−2 case where cancellations are possible without the necessity
to add new matter [26]. Furthermore, as we will see in the next section, combining HFS
and LS measurements provide a test for dark forces free from possible cancellations. The
reason is that a vector force gives a non-zero contribution to the HFS, while scalars do not.

3 Testing dark forces via hyperfine splitting measurements

We consider the hyperfine splitting of the 1s states EHF = E(1sf=1) − E(1sf=0). In
this case, only the light axial-vector contributes to this splitting at leading order in the
non-relativistic expansion (p/mr)

VHF,A(r) =






−2g(1)A g(2)A

3π

(
e−mφr

r
+ 2πδ(3)(r)

m2
φ

)

S1 · S2 for mφ ! a−1
0 ,

− 4d(A)
v

m1m2
δ(3)(r)S1 · S2 for mφ ∼ mr,

(3.1)

where Si refers to the spin of particle-i and d(A)
v can be found in (A.9). Note that the upper

expression in (3.1) does not have a smooth mφ → 0 limit. This is because, in contrast to
the vector case, for the axial vector the extra degree of freedom of the massive vector field
with respect to the massless field contributes to the leading potential.

The energy shift produced by this potential is again computed with the results in
appendix B and gives

EHF,A =






−4g(1)A g(2)A

3πa30m2
φ

3a20m2
φ + 4a0mφ + 4

(a0mφ + 2)2 for mφ ! mrα ∼ a−1
0 ,

−4g(1)A g(2)A

πa30m
2
φ

for mφ ∼ mr,

(3.2)

where again, as was the case for the Lamb shift, the heavy-mφ limit of the expression
for light mass naturally reproduces the heavy mass one, since both come from tree level
exchange.

There is no contribution form a scalar to the hyperfine splitting up to O(p2/m2
r), while

the vector and pseudo-scalar contributions can be compactly expressed by the potential
(X = V, P )

VHF(r) =






hX
g(1)X g(2)X

6πm1m2

(
m2

φe
−mφr

r
− 4πδ(3)(r)

)

S1 · S2 for mφ ! a−1
0 ,

− 4d(X)
v

m1m2
δ(3)(r)S1 · S2 for mφ ∼ mr,

(3.3)
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