Electric dipole moments in effective field theory

Peter Stoffer Physik-Institut, University of Zurich and Paul Scherrer Institut

July 3, 2023

Searching for New Physics at the Quantum Technology Frontier Congressi Stefano Franscini (CSF), Ascona

1

Outline

- [A tower of EFTs](#page-8-0)
- [Leptonic dipole moments](#page-22-0)
- [Neutron EDM in the low-energy EFT](#page-30-0)
- [Matching to lattice QCD](#page-38-0)

[Summary](#page-47-0)

Overview

- [A tower of EFTs](#page-8-0)
- [Leptonic dipole moments](#page-22-0)
- [Neutron EDM in the low-energy EFT](#page-30-0)
- [Matching to lattice QCD](#page-38-0)

[Summary](#page-47-0)

CP violation: a case for new physics

- **baryon asymmetry** in the universe requires more CP violation than Standard Model (SM) can provide
- so far **no direct evidence** of physics beyond the SM
- two options:

[Introduction](#page-2-0)

- light new physics is very well hidden (weakly coupled)
- **new physics is heavy**, with masses well above the electroweak scale
- focus here on the second option

Electric dipole moments

[Introduction](#page-2-0)

- **electric dipole moments** (EDMs) are sensitive probes of CP violation
- **SM (CKM) contribution** tiny
- current experimental limit: $|d_n| < 1.8 \times 10^{-13} e$ fm

→ nEDM Collaboration, PRL **124** (2020) 081803

• n2EDM (PSI) will improve sensitivity by **two orders** of magnitude neutron EDM

Electric dipole moments

[Introduction](#page-2-0)

- **electric dipole moments** (EDMs) are sensitive probes of CP violation
- **SM (CKM) contribution** tiny
- current experimental limit: $|d_n| < 1.8 \times 10^{-13} e$ fm

→ nEDM Collaboration, PRL **124** (2020) 081803

• n2EDM (PSI) will improve sensitivity by **two orders** of magnitude neutron EDM

Electric dipole moments

- non-observation leads to strong **constraints on** CP **-violating sources**
- observation would be a clear **signal of physics beyond the SM** or QCD θ-term

Theory challenges

- non-observation: how to turn experimental bounds into **best generic constraints** on new physics?
- observation: how to **disentangle different possible sources** of CP violation?
- ⇒ work with generic, **model-independent** framework
- ⇒ **accuracy of theoretical description** needs to match experimental precision
- ⇒ **control uncertainties**, in particular non-perturbative aspects

Overview

[A tower of EFTs](#page-8-0)

- [Leptonic dipole moments](#page-22-0)
- [Neutron EDM in the low-energy EFT](#page-30-0)
- [Matching to lattice QCD](#page-38-0)

[Summary](#page-47-0)

[A tower of EFTs](#page-8-0)

- ideal to deal with widely separated scales: $m_N \ll v \ll \Lambda_{\text{UV}}$
- based on a **small set of assumptions**
- **generic framework**, can be used 'stand-alone' or in connection with a broad range of specific models
- work with the relevant degrees of freedom at a particular energy ⇒ **simplify calculations**
- connect different energy regimes, **avoid large logs**

- high energies
- its low-energy quantum effects described by **effective field theory**, containing only SM particles (SMEFT)
- **low-energy EFT** (LEFT): only light SM particles

- high energies
- its low-energy quantum effects described by **effective field theory**, containing only SM particles (SMEFT)
- **low-energy EFT** (LEFT): only light SM particles

- high energies
- its low-energy quantum effects described by **effective field theory**, containing only SM particles (SMEFT)
- **low-energy EFT** (LEFT): only light SM particles

→ Jenkins, Manohar, Stoffer JHEP **01** (2018) 084

- → Jenkins, Manohar, Stoffer JHEP **03** (2018) 016
- → Dekens, Stoffer, JHEP **10** (2019) 197

 \rightarrow Alonso et al. (2014)

Overview

[A tower of EFTs](#page-8-0)

- [Leptonic dipole moments](#page-22-0)
- [Neutron EDM in the low-energy EFT](#page-30-0)
- [Matching to lattice QCD](#page-38-0)

[Summary](#page-47-0)

Form factors

$$
\ell \bigotimes^{\gamma} \ell = ie \bar{u}(p') \Gamma^{\mu}(p, p') u(p) , \quad k = p' - p
$$

form-factor decomposition of vertex function:

$$
\Gamma^{\mu}(p, p') = \gamma^{\mu} F_E(k^2) + i \frac{\sigma^{\mu \nu} k_{\nu}}{2m_{\ell}} F_M(k^2) + \frac{\sigma^{\mu \nu} k_{\nu}}{2m_{\ell}} \gamma_5 F_D(k^2) + \frac{k^2 \gamma^{\mu} - k^{\mu} \cancel{k}}{m_{\ell}^2} \gamma_5 F_A(k^2)
$$

anomalous magnetic moment: $a_\ell = F_M(0)$

electric dipole moment:
$$
d_{\ell} = \frac{e}{2m_{\ell}} F_D(0)
$$

Dipole operators

• leptonic **dipole operators**

$$
\mathcal{L}_{\text{LEFT}} \supset L_{\underset{pr}{e\gamma}} (\bar{e}_{Lp} \sigma^{\mu \nu} e_{Rr}) F_{\mu \nu} + \text{h.c.}
$$

give tree-level contribution to dipole moments:

$$
a_{\ell} = \frac{g_{\ell} - 2}{2} = 4 \frac{m_{\ell}}{e} \text{Re} L_{\substack{e\gamma \\ \ell \ell}} , \quad d_{\ell} = -2 \text{Im} L_{\substack{e\gamma \\ \ell \ell}}
$$

- real/imaginary parts of same Wilson coefficients, but no model-independent relation
- many more operators contribute at loop level:
	- → Panico, Pomarol, Riembau, JHEP **04** (2019) 090
	- → Aebischer, Dekens, Jenkins, Manohar, Sengupta, Stoffer, JHEP **07** (2021) 107
	- \rightarrow Brod, Polonsky, Stamou, arXiv:2306.12478

Leptonic EDMs

 \rightarrow dedicated talks by Eric Hessels, Lorenz Willmann, Chavdar Dutsov

- tiny SM contributions
- electron $EDM: \rightarrow$ Roussy et al., arXiv:2212.11841

 $|d_e| < 4.1 \times 10^{-17} e \, \text{fm}$

• best direct limit on muon EDM: [→] BNL, PRD **⁸⁰** (2009) 052008

$$
|d_{\mu}| < 1.5 \times 10^{-6}\,e\,{\rm fm}
$$

• indirect bound on muon EDM from ^{199}Hg and ThO EDMs: [→] Ema, Gao, Pospelov, PRL **¹²⁸** (2022) 13, 131803

$$
|d_{\mu}({}^{199}{\rm Hg})| < 6.4 \times 10^{-7} e \, \text{fm}
$$
\n
$$
|d_{\mu}(\text{ThO})| < 1.9 \times 10^{-7} e \, \text{fm}
$$

Electron anomalous magnetic moment

- as opposed to EDMs, need to control SM prediction: a_e **limited** by knowledge of α_{QED}
- tension between ^{133}Cs vs. ^{87}Rb recoil measurements **above** 5σ : \rightarrow talk by Pierre Cladé

→ Morel, Yao, Cladé, Guellati-Khélifa, Nature 588 (2020) 7836, 61

Muon anomalous magnetic moment

- as opposed to EDMs, need to control SM prediction: a^µ **limited** by knowledge of **hadronic contributions**
- multiple tensions:
	- BNL/FNAL vs. SM 2020 White Paper: 4.2σ
	- BMWc lattice QCD vs. BNL/FNAL: 1.5σ
	- pre-2023 e^+e^- hadronic cross-section data vs. BMWc lattice QCD: 2.1σ
	- intermediate Fuclidean-time window: 3.7σ
	- pre-2023 e^+e^- hadronic cross-section data vs. CMD-3 (dispersive fit below $1 \,\text{GeV}$): 3.7σ

Muon anomalous magnetic moment

as opposed to EDMs, need to control SM prediction: a^µ **limited** by knowledge of **hadronic contributions**

muon $q - 2$ discrepancy

Muon anomalous magnetic moment

as opposed to EDMs, need to control SM prediction: a^µ **limited** by knowledge of **hadronic contributions**

Overview

[A tower of EFTs](#page-8-0)

- [Leptonic dipole moments](#page-22-0)
- [Neutron EDM in the low-energy EFT](#page-30-0)
- [Matching to lattice QCD](#page-38-0)

[Summary](#page-47-0)

• contribution schematically given as

$$
d_N \sim \bigoplus_{i} \underbrace{\text{Res}_{i}^{\text{gen}^{\text{def}}_{i}} \bigoplus_{i} \bigoplus_{i} L_i \text{ }\langle N | \mathcal{O}_i | N \gamma \rangle}
$$

• contribution schematically given as

• contribution schematically given as

$$
d_N \sim \underbrace{\bigcap_{i} \underbrace{\underbrace{\left(\bigcup_{i} \underbrace{\left(\bigcup_{i} \right)\left(\bigcup_{i} \right)}{\left(\bigcup_{i} \right)\right)}}}\right)} }\right)} }\right)}^{\mathsf{Ind}}}}_{\text{Indronic matrix element}}
$$

• contribution schematically given as

$$
d_N \sim \bigoplus_{i} \underbrace{\text{diag}^{\text{diag}^{\text{diag}}_i}}_{i} \biggl(\biggl) = \sum_{i} L_i \ \langle N | \mathcal{O}_i | N \gamma \rangle
$$

- calculate matrix element in LEFT at a renormalization scale of $\mu \sim 2 \ldots 3 \,\text{GeV}$
- at present, **large uncertainties** on matrix elements dilute experimental sensitivity
- aim for $10-25\%$ precision to avoid cancellations

 \rightarrow Alarcon et al., arXiv:2203.08103

- hadronic EDMs (nEDM) complicated: **QCD is non-perturbative** at low energies
- any P -odd, CP -odd flavor-conserving operator **contributes non-perturbatively** to nEDM:
	- QCD θ-term
	- dimension-five quark (C)EDM operators
	- dimension-six three-gluon operator
	- dimension-six P/CP -odd four-fermion operators

 $d_N = -(1.5 \pm 0.7) \times 10^{-3} \bar{\theta} e$ fm

 $-(0.20 \pm 0.01)d_u + (0.78 \pm 0.03)d_d + (0.0027 \pm 0.0016)d_s$

$$
- (0.55 \pm 0.28)e \tilde{d}_u - (1.1 \pm 0.55)e \tilde{d}_d + (??)e \tilde{d}_s
$$

 $+$ (50 ± 40) MeV $e \tilde{d}_G +$ $(??)$ four-quark

 \rightarrow Alarcon et al., arXiv:2203.08103

- ideally use **lattice QCD** to compute matrix elements
- problem with lattice and EFT: $d_N \sim \sum_i L_i(\mu) \langle N|{\cal O}_i^{\rm MS}|N\gamma\rangle$ $\overline{\text{MS}}$ cannot be implemented on the lattice!
- requires a **matching calculation**

Overview

- [A tower of EFTs](#page-8-0)
- [Leptonic dipole moments](#page-22-0)
- [Neutron EDM in the low-energy EFT](#page-30-0)
- [Matching to lattice QCD](#page-38-0)

General procedure

- $\overline{\text{MS}}$: subtraction of $1/\varepsilon$ poles in dimensional regularization
- **define renormalized operators** in a scheme amenable to lattice computations
- compute their matrix elements in lattice QCD
- calculate relation between MS and lattice scheme **in perturbation theory** (at $\mu \sim 2 \dots 3 \,\text{GeV}$)
- use this matching to derive matrix elements of $\overline{\text{MS}}$ operators

RI schemes

• **R**egularization-**I**ndependent (**S**ymmetric) **MOM**entum-subtraction scheme

 \rightarrow Martinelli et al. (1995), Sturm et al. (2010)

- impose renormalization conditions on truncated **off-shell Green's functions** for Euclidean momenta
- RI-SMOM: **insert momentum** into operator to suppress unwanted IR effects
- calculation in a **fixed** R_{ϵ} **gauge**

Matching MS and RI-SMOM

• matching for dimension-5 quark (C)EDM operators:

→ Bhattacharya et al., PRD **92** (2015) 11, 114026

• dimension-6 three-gluon operator GGG :

→ Cirigliano, Mereghetti, Stoffer, JHEP **09** (2020) 094

- complications:
	- **huge set of operators** (34 for three-gluon operator), including unphysical ones
	- requires calculation of **many matrix elements**
	- **power divergences** in lattice spacing difficult to tackle

A more promising scheme: gradient flow

→ Lüscher, JHEP **08** (2010) 071, JHEP **04** (2013) 123

- **gradient flow**: introduce new artificial dimension: flow time t (not related to ordinary time)
- boundary condition: ordinary QCD at $t = 0$, $B_{\mu}(t=0) = G_{\mu}, \chi(t=0) = \psi$
- gauge-invariant **flow equations**:

$$
\partial_t B_\mu = D_\nu G_{\nu\mu} \,, \quad \partial_t \chi = D^2 \chi
$$

• flow acts as a UV regulator

Gradient flow: advantages

- "flowed operators" automatically **UV finite**, apart from quark-field (+ coupling & mass) renormalization
- connect flowed operators with $\overline{\text{MS}}$ operators in perturbation theory
- **gauge-invariant** results
- on the lattice: **continuum limit** for fixed t possible
- **power divergences** no longer in $1/a$, but in $1/t$ ⇒ **disentangled from continuum limit**

Gradient-flow matching: current status

• dimension-5 quark (C)EDM matched at one loop:

→ Mereghetti, Monahan, **Rizik**, Shindler, Stoffer, JHEP **04** (2022) 050

• dimension-6 four-quark operators:

 \rightarrow **Bühler**, Stoffer, [arXiv:2304.00985 \[hep-lat\]](https://arxiv.org/abs/2304.00985)

• dimension-6 CP -odd three-gluon operator:

→ **Lara Crosas**, Mereghetti, Monahan, **Rizik**, Shindler, Stoffer, in progress

Quark CEDM matching coefficient

Four-quark matching coefficient (scalar singlet)

Overview

- [A tower of EFTs](#page-8-0)
- [Leptonic dipole moments](#page-22-0)
- [Neutron EDM in the low-energy EFT](#page-30-0)
- [Matching to lattice QCD](#page-38-0)

[Summary](#page-47-0)

Theory challenges

low-energy precision searches pose interesting **theory challenges**:

- given the experimental progress: reach appropriate **theoretical accuracy**
- **model-independent and robust** connection between low-energy physics and UV theories: EFT provide ideal framework, need to control (perturbative) running and mixing effects
- problem at low energies are (huge) **hadronic uncertainties**

Theory challenges

[Summary](#page-47-0)

- if using lattice QCD for matrix elements ⇒ **matching calculation** to appropriate scheme
- traditional RI-SMOM schemes very challenging
- recent progress with **gradient flow**: dimension 5 and dimension-6 four-quark completed at one loop
- **matching equations up to dimension 6 nearly** completed at one loop
- in some cases, two-loop coefficients would be useful