Testing fundamental interactions with the hyperfine splitting in light atomic systems

Krzysztof Pachucki (University of Warsaw) & V.A. Yerokhin (MPI, Heidelberg) & V. Patkos (Charles University, Praha)

Searching for New Physics at the Quantum Technology Frontier Ascona, July 3, 2023

Fundamentals

Hyperfine splitting comes from interaction between the electron and the nuclear spin

$${\it E_{
m F}}=\,-\,rac{2}{3}\,\langle\psi|ec{\mu}\cdotec{\mu}_{e}\,\delta^{3}(r)|\psi
angle$$

- In the ground electronic state it is governed by a short range interaction
- Thus, it is very sensitive to the nuclear charge and magnetic moment distribution
- But it is also sensitive to the nuclear (vector) polarizability
- Measurements of HFS can be extremely precise: 14 digits for H, D
- QED theory can also be quite precise: about 8, 9 significant digits
- Any discrepancy with theoretical predictions will signal an unknown nuclear structure effect, or of a yet unknown short range spin-dependent interaction
- Looking for such discrepancies is our primary goal, the most known example is HFS in μ^+e^-

Simplified theory for hydrogenic systems

- According to the Dirac equation: $E_{\rm hfs} = -\langle \psi | e \vec{\alpha} \cdot \vec{A} | \psi \rangle$, where $e \vec{A}(\vec{r}) = \frac{e}{4\pi} \vec{\mu} \times \frac{\vec{r}}{r^3}$
- $\bullet\,$ QED corrections, start with $\sim 10^{-3}$ can be accounted for very accurately
- Finite nuclear mass effects can not be accounted for by the Dirac equation
- Finite nuclear size effects can be accounted for, only approximately charge and magnetic moment form factors: ρ̃ = ρ̃(q̃² − ω²)
- The second order correction in $e \vec{\alpha} \cdot \vec{A}$ is singular ..., and is a good example of limitation of approaches based relativistic quantum mechanics

Relativistic QM versus QED

• the first order hyperfine interaction

$$\begin{split} E_{hfs} &= -\langle \psi | \boldsymbol{e} \, \vec{\alpha} \cdot \vec{A} | \psi \rangle \\ \vec{A}(\vec{r}) &= \int \frac{d^3k}{(2\pi)^3} \, \boldsymbol{e}^{j \, \vec{k} \vec{r}} \left(-i \right) \vec{\mu} \times \vec{k} \, \frac{\rho_M(k^2)}{k^2} = \frac{1}{4\pi} \, \vec{\mu} \times \left[\frac{\vec{r}}{\vec{r}^3} \right]_{fs} \end{split}$$

• the second order hyperfine interaction according to relativistic quantum mechanics

$$E_{hfs}^{(2)} = e^2 \left\langle \bar{\psi} \middle| \vec{\gamma} \cdot \vec{A} \frac{1}{p - \gamma^o V - m} \vec{\gamma} \cdot \vec{A} \middle| \psi \right\rangle$$

the second order hyperfine interaction according to QED

$$\begin{split} \delta E &= i \, e^2 \, \int \frac{d \, \omega}{2 \, \pi} \, \int \frac{d^3 k_1}{(2 \, \pi)^3} \, \int \frac{d^3 k_2}{(2 \, \pi)^3} \, \frac{\rho_M(k_1^2 - \omega^2)}{\omega^2 - k_1^2 + i \, \epsilon} \, \frac{\rho_M(k_2^2 - \omega^2)}{\omega^2 - k_2^2 + i \, \epsilon} \\ & \times \left\langle \bar{\psi} \middle| \gamma^i \, e^{i \, \vec{k}_1 \vec{r}} \, \frac{1}{\not p - \gamma^o \, V + \gamma^0 \, \omega - m + i \, \epsilon} \, \gamma^j \, e^{-i \, \vec{k}_2 \vec{r}} \, \middle| \psi \right\rangle \\ & \times \left[(\vec{\mu} \times \vec{k}_1)^i \, \frac{1}{-\omega + i \, \epsilon} \, (\vec{\mu} \times \vec{k}_2)^j + (\vec{\mu} \times \vec{k}_2)^j \, \frac{1}{\omega + i \, \epsilon} \, (\vec{\mu} \times \vec{k}_1)^i \right] \end{split}$$

coincides with the relativistic QM after changing the order in the second term

Nuclear structure effects in hyperfine splitting

• $\delta E_{nucl} = \delta^{(1)} E_{nucl} + \delta^{(2)} E_{nucl} + \dots$ where $\delta^{(1)} E_{nucl}$ is the two-photon exchange correction of order $(Z \alpha) E_F$, $\delta^{(2)} E_{nucl}$ is the three-photon exchange correction of order $(Z \alpha)^2 E_F$, $E_F = -\frac{2}{3} \psi^2(0) \vec{\mu} \cdot \vec{\mu}_e$

• $\delta^{(1)}E_{nucl} = -2 m_r Z \alpha r_Z E_F$ where r_Z is the Zemach radius defined by $r_Z = \int d^3 r_1 \int d^3 r_2 \rho_M(r_1) \rho_E(r_2) |\vec{r_1} - \vec{r_2}|$

nuclear recoil correction (includes the second order HFS

$$\delta^{(1)} E_{\text{fns,rec}} = -E_F \frac{Z \alpha}{\pi} \frac{m}{M} \frac{3}{8} \left\{ g \left[\gamma - \frac{7}{4} + \ln(m r_{M^2}) \right] - 4 \left[\gamma + \frac{9}{4} + \ln(m r_{EM}) \right] - \frac{12}{g} \left[\gamma - \frac{17}{12} + \ln(m r_{E^2}) \right] \right\}$$

Accurate QED theory of HFS

• The complete hyperfine splitting is conveniently represented as

$$E_{\rm hfs} = E_F \left(1 + \delta \right),$$

• δ represents the correction to the Fermi energy

$$\delta = \kappa + \delta^{(2)} + \delta^{(3)} + \delta^{(4)} + \delta^{(1)}_{nuc} + \delta^{(1)}_{rec} + \delta^{(2)}_{nuc} + \delta^{(2)}_{rec} ,$$

- $\delta^{(i)}$, $\delta^{(i)}_{nuc}$, and $\delta^{(i)}_{rec}$ are the QED, nuclear, and recoil corrections of order α^i
- coefficients $\delta^{(i)}$ can be calculated for 1-, 2-, and 3-electron atoms and ions very accurately using NRQED theory
- What is left, are unknown nuclear polarizability effects

Contributions to HFS in ³He⁺ ion

Term	Value	$\times E_F$ [kHz]
1	1	-8 656 527.892 (7)
κ	0.001 159 65	-10 038.6
$\delta^{(2)}$	0.000 127 07	-1 100.0
$\delta^{(3)}$	-0.00001949	168.7
$\delta^{(4)}$	-0.00000075	6.5
$\delta^{(1)}_{ m rec} \ \delta^{(2+)}_{ m nuc} \ \delta^{(2)}_{ m rec}$	-0.000 012 17 (60)	105.4 (5.3)
$\delta_{nuc}^{(2+)}$	-0.000 002 89(3)	25.0
$\delta_{\rm rec}^{(2)}$	-0.000 001 16 (18)	10.1 (1.6)
theory without $\delta_{\rm nuc}^{(1)}$ experiment (Blaum:20 $\delta_{\rm nuc}^{(1)}$	1.001 250 26 (63) 22) 1.001 053 77 -0.000 196 49 (63)	-8 665 649.865 77́ (26)
\widetilde{r}_Z this work r_Z (Blaum:2022) r_Z (Sick:2014) exp \widetilde{r}_Z (μ He ⁺ :2023)	2.600 (8) fm 2.608 (24) fm 2.528 (16) fm 2.420(16) fm	
$\widetilde{r}_Z - r_Z(\exp) =$ $\widetilde{r}_Z(\mu He^+) - r_Z(\exp) =$	0.072 (18) fm -0.108 (18) fm	

Polarizability contribution is relatively small in He⁺, but if μ He⁺ is of opposite sign !

Contributions to HFS in ${}^{3}\text{He}$ atom in ${}^{2}{}^{3}S_{1}$ state

Using He⁺ HFS

Term	×10 ⁶	$\times E_F(\text{He})[\text{Hz}]$
$\delta^{(2)}$ (He-He $^+$)	3.0120	-20279
$\delta_{ m rec}^{(2+)}(m He- m He^+)$	-8.9937(21)	60 552 (14)
$\delta^{(3)}$ (He-He ⁺)	0.1843	-1241
$\delta^{(4)}$ (He-He ⁺)	0.0058(58)	-39 (39)
δ (He-He ⁺) 1 + δ (He ⁺), from (Schneider:2022)	-5.7916(62)	38 993 (41) 6 739 740 174
$ u_{ m hfs,theo}(m He) $ $ u_{ m hfs,exp}(m He)$ (Rosner:1970)		-6 739 701 181 (41) -6 739 701 177 (16)

Perfect agreement !

Contributions to HFS in $^{6,7}Li^+$ ion

Term	Value (⁶ Li ⁺)	Value (⁷ Li ⁺)
1	1	1
κ	0.001 159 7	0.001 159 7
$\delta^{(2)}$	0.000 443 5	0.000 443 5
$\delta^{(3)}$	-0.000 032 8	-0.000 032 8
$\delta^{(4)}$	-0.0000021(5)	-0.000 002 1(5)
$\delta^{(1)}_{rec}$	-0.000 010 3(5)	0.000 001 8 (1)
$\delta_{\text{nuc}}^{\text{rec}}$ $\delta_{\text{nuc}}^{(2+)}$	-0.0000047	-0.0000064
$\delta_{\rm rec, mix}^{(2)}$	0.000 002 4	0.000 006 2
$\delta_{max}^{(2)}$	0.000 000 3	0.000 000 4
$\delta_{rec,rad}^{(2)}$	0.000 000 0(2)	0.000 000 0
Sum	1.001 555 7(8)	1.001 570 3(5)
$1 + \delta_{exp}$ (Sun: 2023, Guan: 2020)	1.001 299 9(24)	1.001 197 6(29)
$\delta_{\rm nuc}^{(1)}$	-0.000 255 8(25)	-0.000 372 7(29))
this work \tilde{r}_Z	2.26(2) fm	3.29(3) fm
Sun:2023 Xiao-Qiu Qi: 2020 X(iao-Qiu Qi: 2020	2.44(2) fm 2.40(16) fm 2.47(8) fm	3.33(7) fm 3.38(3) fm
Puchalski: 2013	2.30(3) fm	3.25(3) fm

More accurate picture of nuclear structure effects in HFS

$$\delta^{(1)}E_{\rm hfs} = E_{\rm Low} + E_{\rm 1nuc} + E_{\rm pol}$$

$$E_{1 \text{nuc}} = -\frac{8\pi}{3} \alpha^2 \frac{\psi^2(0)}{m_p + m} \vec{s} \cdot \left\langle \sum_a g_a \vec{s}_a r_{aZ} \right\rangle$$

$$E_{\text{Low}} = \frac{\alpha}{16} \psi^2(0) \,\vec{\sigma} \sum_{a \neq b} \frac{e_a \, e_b}{m_b} \left\langle 4 \, r_{ab} \, \vec{r}_{ab} \times \vec{p}_b + \frac{g_b}{r_{ab}} \left[\vec{r}_{ab} \left(\vec{r}_{ab} \cdot \vec{\sigma}_b \right) - 3 \, \vec{\sigma}_b \, r_{ab}^2 \right] \right\rangle$$

For the case of an nS state of D, Low's correction becomes

$$\delta E_{\rm Low} \approx -2\,\mu\,\alpha\,E_F\,\frac{g_n}{g_d}\langle R\rangle\,,\tag{1}$$

where *R* is the distance of the proton from the center of mass, $\langle R \rangle \approx 1.63$ fm.

- It is similar to the Zemach correction, but with the important difference that the deuteron g-factor is replaced by the neutron one, but they have a opposite sign !
- The calculation by by Friar and Payne in 2005 for the 1*S* state of deuterium, $(\delta E_{\text{Low}}(e\text{D}) + \delta E_{\text{lnucl}})/E_F = 141$ ppm, is in approximate agreement with the experiment, $(E_{\text{hfr}}^{\text{exp}} E_{\text{hfr}}^{\text{hfr}})/E_F = -3$ ppm.

Discrepancies in μ D hfs

the "experimental value" of the nuclear-structure correction in µD(2S) hfs

 $\delta E_{\text{nucl,exp}} = E_{\text{hfs}}(\text{exp}) - E_{\text{hfs}}(\text{point}) = 0.0966(73) \text{ meV}$

• the numerical value of the Zemach correction with $r_Z = 2.593(16)$ fm is

 $\delta E_{\text{Zem}} = -0.1177(33) \text{ meV}$, opposite sign !

 including the nuclear vector polarizability and the inelastic three-photon exchange (10% effect)

 $\delta E_{\rm nucl, theo} = 0.0283(86) \, {\rm meV}$

• the difference is

 $\delta E_{\text{nucl,theo}} - \delta E_{\text{nucl,exp}} = 0.0583(113)$

• There is no a comprehensive theory for nuclear polarizability effects

- QED theory of HFS is sufficiently accurate to probe the nuclear structure
- the finite nuclear mass effects have to be accounted for (beyond the Dirac equation)
- the finite nuclear size effects $\tilde{\rho}(\vec{q}^2-\omega^2)$ require inclusion of the photon exchange energy
- there is no yet a comprehensive theory for nuclear polarizability effects to HFS
- comparison to muonic atoms HFS would be very interesting μ Li, μ Be, μ B