We have a cyclotron frequency ratio dataset spanning 1.5 years with more than **30000 antiproton-proton frequency comparisons**. Two method were used:

> Analysing the cyclotron frequency difference for yearly variation gives $|\alpha_{g} - 1|$ <0.03 (CL 68%) [2]

Searching for Physics beyond the Standard Model using Antiprotons at \overline{B} **SE**

E. Wursten^{1,2,3}, M. Borchert^{1,4,5}, J.A. Devlin^{1,2}, S. Erlewein^{1,2,3}, M. Fleck^{1,6}, J. A. Harrington^{1,3}, J. I. Jäger^{2,3}, B. M. Latacz^{1,2}, G. Umbrazunas^{1,7}, B. P. Arndt^{1,3,8}, P. Micke^{1,2}, F. Abbass⁹, M. A. Bohman^{1,3}, D. Popper⁹, M. Wiesinger³, C. Will³, K. Blaum³, Y. Matsuda⁶, A. H. Mooser³, C. Ospelkaus^{4,5}, C. Smorra^{1,9}, A. Soter⁷, W. Quint⁸, J. Walz^{9,10}, Y. Yamazaki¹, Y. V. Stadnik, and S. Ulmer^{1,11}

¹RIKEN, Fundamental Symmetries Laboratory, Japan; ²CERN, Switzerland; ³Max-Planck-Institut für Kernphysik Heidelberg, Germany; ⁴Leibniz University Hannover, Germany; ⁵PTB Braunschweig, Germany; ⁶University of T Switzerland; ⁸GSI - Helmholtzzentrum für Schwerionenforschung GmbH, Germany; ⁹Johannes Gutenberg-Universität Mainz, Germany; ¹⁰Helmholtz-Institut Mainz, Germany; ¹¹Heinrich Heine University Düsseldorf, Germany

> The cyclotron frequency acquires a **redshift** in the gravitational potential [8]: $U= GM$

 \boldsymbol{r} It could be that antimatter feels a different gravitational coupling and sees a slightly different potential α*U*. This would imply a **cyclotron frequency difference**:

$$
\frac{\overline{\omega}_c - \omega_c}{\omega_c} = 3(\alpha_g - 1) U/c^2
$$

What is the absolute gravitational potential U at the surface of the Earth? $(U/c² = 3 \times 10⁻⁵)$ is still critically debated in the scientific community

 $\begin{tabular}{ll} \quad \quad & if & 1 \quad \text{Leibniz} \\ \hline \begin{tabular}{c} i & i \quad \text{Leibniz} \\ i & \mathcal{O}_i & 2 \quad \text{Universität} \\ i & \mathcal{O}_i & \mathcal{H} \\ \end{tabular} \end{tabular}$

€

TARACTES

 $\frac{1}{\sqrt{2}}$

(Sep

RRINEN

Acknowledgements

Financial support by RIKEN, the Max Planck Society, CERN, the Universities of Tokyo, Mainz, Hannover, Heidelberg, PTB Braunschweig, and the Max-Planck/RIKEN/PTB Center for Time, Constants, and Fundamental Symmetries

References

[1] A.D. Sakharov, JETP Lett **5**, 24 (1967) [2] M. Borchert et al., Nature **601**, 53 (2022) [3] C. Smorra et al., IJMS **389**, 10 (2015) [4] S. Sellner et al., NJP **19**, 083023 (2017)

- Spontaneous breaking of Lorentz symmetry
- Effective field theory at low energy Add all terms to SM Lagrangian that preserve U(1) gauge invariance, e.g.: $\mathcal{L}^{(3)} = -a^\mu \bar{\psi} \gamma_\mu \psi - b^\mu \bar{\psi} \gamma_5 \gamma_\mu \psi - \frac{1}{2} H^{\mu \nu} \bar{\psi} \sigma_{\mu \nu} \psi$

[5] G. Schneider et al., Science **358**, 1081 (2017) [6] C. Smorra et al., Nature **239**, 47 (2017) [7] Y. Ding et al., PRD **94**, 056008 (2016) [8] R.J. Hughes et al., PRL **66**, 854 (1991)

- The terms modify the particle's energy levels in the Penning trap (v_c and v_L)
- The coefficients are constant in an inertial frame
- BASE lab frame is not an inertial frame… => **modulations at sidereal frequency and its harmonics**!

• Assume a **Higgs-like interaction** between the scalars ϕ and the fermions ψ :

Weak Equivalence Principle for Clocks

Scalar Dark Matter & Antimatter

-
-
-

Standard Model Extension

CPT theorem

Any quantum theory, formulated on flat spacetime is symmetric under the combined action of CPT transformations, provided the theory respects:

- Locality
- Unitarity (conservation of probability)
- Lorentz invariance

Oscillation amplitude limit: $(q/m)_{\overline{p}}$ $(q/m)_{\rm p}$ < 0.2ppb per sidereal day

Standard Model Extension [7]:

Differential measurement

- Scalar bosons are a candidate for **dark matter**:
- They would form a **coherently oscillating classical field**, oscillating at the Compton frequency: $\phi(t) \approx \phi_0 \cos(m_\phi t)$
- We are enveloped by a cloud of dark matter as we move throughout the Milky Way. Its density is

$$
\mathcal{L}_{\text{int}} = -\sum_{\psi} \frac{\phi m_{\psi} \bar{\psi} \psi}{\Lambda_{\psi}}
$$

• If we **assume CPT symmetry is broken** and the scalar field couples more strongly to the antiproton than the proton $(\Lambda_{\bar{p}} \ll \Lambda_p)$, this will result in an **oscillating mass ratio**:

The dataset allows us to study

- **Scalar boson masses** between 10^{-21} eV and 10^{-17} eV
- Simulations are underway to take the "**Look-elsewhere effect**" into account by calculating the "False-alarm probability" for peak detection
- The 95% CL exclusion region for the interaction strength is being calculated

The trajectory of the Earth around the Sun is elliptical, resulting in a change of the gravitational potential during orbit of

Model Measurement Preliminary results

Sideband method

- **1.6ppb** scatter per shot • **0.8ppb** scatter per shot
- Relatively minor systematic effects

Particle is in equilibrium with the axial detection system, the radial modes are measured by inducing Rabi oscillations: Radial mode is determined by exciting the particle and measuring the frequency directly with a dedicated detection system:

• Larger systematics due

to high radial energy