
We have a cyclotron frequency ratio dataset spanning
1.5 years with more than 30000 antiproton-proton
frequency comparisons. Two method were used:

Analysing the cyclotron frequency
difference for yearly variation gives
𝛼𝑔 − 1 <0.03 (CL 68%) [2]

Searching for Physics beyond the Standard
Model using Antiprotons at _

The cyclotron frequency acquires a redshift in the gravitational potential [8]:
𝑈 =

𝐺𝑀
𝑟

It could be that antimatter feels a different gravitational coupling and sees a slightly
different potential α𝑈. This would imply a cyclotron frequency difference:

𝜔𝑐 − 𝜔𝑐

𝜔𝑐
= 3 𝛼𝑔 − 1 𝑈 𝑐2⁄

What is the absolute gravitational potential 𝑈 at the surface of the Earth?
(𝑈 𝑐2⁄ = 3 × 10−5) is still critically debated in the scientific community
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The Standard Model of Particle
Physics is very successful, but there are
still some open issues concerning:

• the matter/antimatter asymmetry,
• dark matter, dark energy,
• gravity, …

The BASE experiment studies protons and
antiprotons, can we use it to investigate
these the issues?

The baryon asymmetry of the Universe:
where has all the antimatter gone?
According to Sakharov we need [1]:

• Baryon number violation
• C and CP violation
• Interactions out of thermal

equilibrium or CPT violation

Can we find traces of an anomalous
interaction of antimatter with dark
matter or gravity?

BASE Experiment
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Weak Equivalence Principle for Clocks

Motivation

Scalar Dark Matter & Antimatter
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Cyclotron frequency is given by
𝝂𝒄 = 𝝂+

𝟐 + 𝝂−
𝟐 + 𝝂𝒛

𝟐 =
1

2𝜋
𝑞
𝑚 𝐵

𝑅exp =
νc,p

νc,H−
=

(𝑞/𝑚)p

(𝑞/𝑚)H−

(𝑞/𝑚)p

(𝑞/𝑚)p
+1 = −3 16 × 10−12 16ppt [2]

Charge-to-mass ratio

𝑔𝑝

2
= +2.792 847 344 62 82 0.3ppb [5]

𝑔𝑝

2
= −2.792 847 344 1(42) 1.5ppb [6]
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𝑞𝑝/𝑚𝑝
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𝜈𝐿

𝜈𝑐

Magnetic moment

Lifetime

𝜏�̅� > 10.2𝑎 [4]

Antiprotons stored in the reservoir
trap [3] for longer than a year

Larmor frequency is determined
using the continuous Stern-
Gerlach effect and single spin-flip
spectroscopy

BASE apparatus

Standard Model Extension
CPT theorem
Any quantum theory, formulated on flat spacetime is symmetric under the
combined action of CPT transformations, provided the theory respects:
• Locality
• Unitarity (conservation of probability)
• Lorentz invariance

Oscillation amplitude limit:
(𝑞/𝑚)p

(𝑞/𝑚)p
< 0.2ppb per sidereal day

Standard Model Extension [7]:
• Spontaneous breaking of Lorentz symmetry
• Effective field theory at low energy
• Add all terms to SM Lagrangian that

preserve U(1) gauge invariance, e.g.:
ℒ(3) = −𝑎𝜇𝜓𝛾𝜇𝜓 − 𝑏𝜇𝜓𝛾5𝛾𝜇𝜓 − 1

2𝐻𝜇𝜈𝜓𝜎𝜇𝜈𝜓
• The terms modify the particle’s energy levels

in the Penning trap (𝜈𝑐 and 𝜈𝐿)
• The coefficients are constant in an inertial

frame
• BASE lab frame is not an inertial frame…

=> modulations at sidereal frequency
and its harmonics!

Differential measurement

Scalar bosons are a candidate for dark matter:
• They would form a coherently oscillating classical

field, oscillating at the Compton frequency:
𝜙(𝑡) ≈ 𝜙0 cos(𝑚𝜙𝑡)

• We are enveloped by a cloud of dark matter as we
move throughout the Milky Way. Its density is

𝜌𝜙 ≈ 𝑚𝜙
2 𝜙0

2

2

• Assume a Higgs-like interaction between the
scalars 𝜙 and the fermions 𝜓:

ℒint = −
𝜙𝑚𝜓𝜓𝜓

Λ𝜓𝜓

• If we assume CPT symmetry is broken and the
scalar field couples more strongly to the antiproton
than the proton ( Λ�̅� ≪ Λ𝑝 ), this will result in an
oscillating mass ratio:

𝑚�̅�

𝑚𝑝
≈ 1 −

𝜙0 cos(𝑚𝜙𝑡)
Λ�̅�

The dataset allows us to study
• Scalar boson masses between

10−21eV and 10−17eV
• Simulations are underway to take the

“Look-elsewhere effect” into account by
calculating the “False-alarm probability” for
peak detection

• The 95% CL exclusion region for the
interaction strength is being calculated

The trajectory of the Earth around the
Sun is elliptical, resulting in a change
of the gravitational potential during
orbit of

∆𝑈
𝑐2 = 3 × 10−10

Model Measurement Preliminary results

Sideband method

Particle is in equilibrium
with the axial detection
system, the radial modes
are measured by inducing
Rabi oscillations:
• 1.6ppb scatter per shot
• Relatively minor

systematic effects

Peak method

Radial mode is determined
by exciting the particle and
measuring the frequency
directly with a dedicated
detection system:
• 0.8ppb scatter per shot
• Larger systematics due

to high radial energy


