

Hyperfine Splitting in Muonic Hydrogen

European Research Council Established by the European Commission

O. Kara¹, A. Antognini^{1,2} on behalf of the CREMA collaboration

¹ Paul Scherrer Institute (PSI), Switzerland ²ETH Zürich, Switzerland

- Stop muon beam in 1 mm H₂ gas target @ 22 K, 0.5 bar \square H₂ gas
- Wait until µp atoms de-excite and thermalize
- \blacktriangleright Laser pulse: $\mu p(F=0) + \gamma \rightarrow \mu p(F=1)$
- \blacktriangleright De-excitation: $\mu p(F=1) + H_2 \rightarrow \mu p(F=0) + H_2 + E_{kin}$
- \rightarrow µp diffuses to Au-coated target walls
- \succ Formed μAu^* de-excites producing X-rays
- Evaluate resonance \Rightarrow plot number of X-ray vs laser frequency

$|\Psi(r=0)|^2 \propto m_r^3$

Optical down-conversion system in the mid-infrared

Measurement of the ground-state hyperfine splitting in muonic hydrogen

The experiment is sensitive to higher order corrections of the hyperfine splitting

Excitation and detection system

Cell type —— Circular

---- Two-mirror

Multi-pass cavity

Detection system

Goal

Measure: 1S-HFS in µp with 1 ppm accuracy $\Delta E_{\rm HFS}^{\rm th}(\mu p) = 183.788(7) + 1.0040 \Delta E_{\rm 2PE} \text{ meV}$

- \blacktriangleright Maximizing the fluence on the 1 mm µp target
- Challenging cavity geometry

Resulting Fluence Injection Point vs different geometries > Background : Diffusion, Muon decay, uncorrelated

> Identify with high efficiency the background events

References

• M. Marszalek, Diss. ETH Zurich, 2022

- \blacktriangleright Finalization of 2 µm OPO + OPA branch
- Development of difference frequency generation (DFG)

Outlook

- > Optimize & test the reflectivity of the toroidal cavity
- A. Antognini et al., Science 339, 417 (2013).
- R. Pohl et al., Nature 466, 213 (2010). • L. Sinkunaite, Diss. ETH Zurich, 2022
- Pineda & Peset (2017)
- M. Zeyen, Diss. ETH Zurich, 2022
- K. Schuhmann et al., Appl. Opt. 57, 10323-10333 (2018)