

X-ray FELs and LCLS-II (High Energy)

Tor Raubenheimer November 17, 2022

Jefferson Lab

rerer

BERKELEY LAB

Outline

- X-ray FEL Primer
- LCLS X-ray FEL (15 GeV e- beam in 2009) → 250 eV 12 keV x-rays
- LCLS-II (4 GeV e- beam in 2023) → 250 eV 5,000 eV x-rays
- LCLS-II-HE (8 GeV e- beam in 2027) → 250 eV 20,000 eV x-rays
- LCLS-II Undulator Commissioning (2020-2022)
- SRF Technology
- LCLS-II SRF Commissioning

LCLS was the 1st X-ray FEL and was quickly followed by SACLA, Swiss-FEL, PAL-FEL, EuXFEL

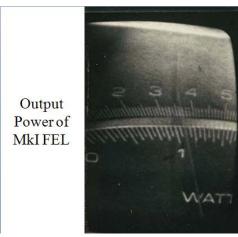
LCLS-II requires advances in 4 critical areas: SRF, CW Injectors, Variable gap undulators, and beam dynamics to increase LCLS brightness by 10,000x.

The Free Electron Laser (FEL)

JOURNAL OF APPLIED PHYSICS

VOLUME 42, NUMBER 5

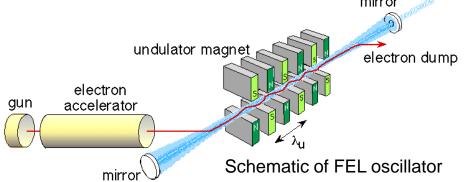
APRIL 1971


Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field

JOHN M. J. MADEY

Physics Department, Stanford University, Stanford, California 94305 (Received 20 February 1970; in final form 21 August 1970)

The Weizsäcker-Williams method is used to calculate the gain due to the induced emission of radiation into a single electromagnetic mode parallel to the motion of a relativistic electron through a periodic transverse dc magnetic field. Finite gain is available from the far-infrared through the visible region raising the possibility of continuously tunable amplifiers and oscillators at these frequencies with the further possibility of partially coherent radiation sources in the ultraviolet and x-ray regions to beyond 10 keV.

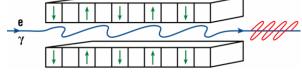


Free Electron Laser (FEL) Primer

Two primary configurations: **low gain oscillator** using mirrors or **high gain single pass amplifier**

3 main elements: e- gun, accelerator,

& undulator



Physics is relatively simple: transverse motion in undulator allows e- to couple to light; light acts back on the electrons and causes beam to bunch, radiating as N² rather than N (no need for quantum mechanics).

Lorentz contraction and relativistic Doppler shift of dipole radiation $\rightarrow \lambda_r \sim \lambda_u / 2\gamma^2$ and wavelength easily tunable over wide range

FEL Resonance Condition – Undulator Motion

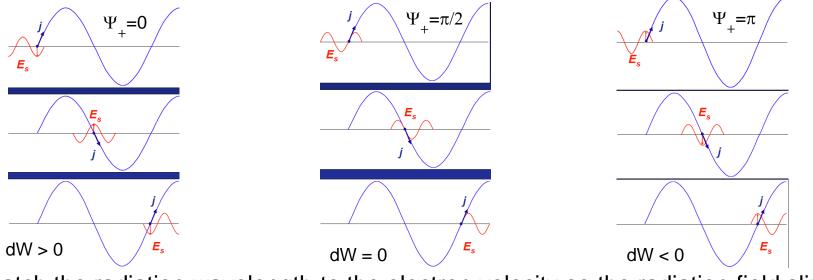
Looking at motion in an undulator:

- $\frac{dx}{ds} = \frac{e\beta c}{\gamma m\beta^2 c^2} \frac{B}{k_u} \sin(k_u s)$ $\beta_x = \frac{K}{\gamma} \sin(k_u s)$ \rightarrow trajectory angle in units of 1/ γ (SR cone is 1/ γ)

where K = 0.93 λ_{μ} [cm] B [T]

Now calculate the 'longitudinal' velocity of the electron

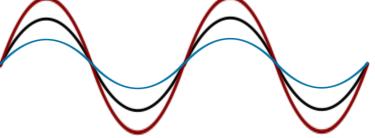
$$\beta_z^2 = 1 - \frac{1}{\gamma^2} - \beta_x^2 = 1 - \frac{1}{\gamma^2} [1 + K^2 \sin^2(sk_u)]$$

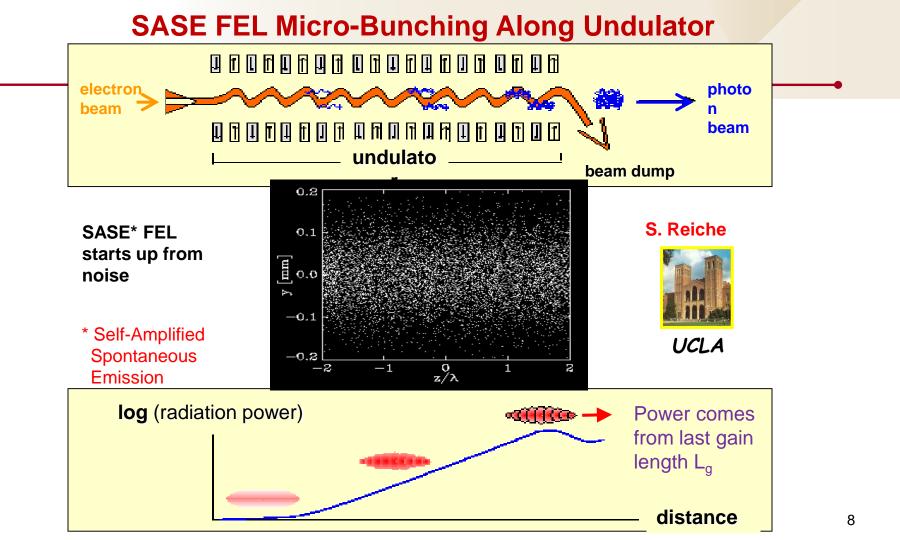

$$\beta_z \approx 1 - \frac{1 + K^2/2}{2\gamma^2} + \frac{K^2}{4\gamma^2} \cos(2sk_u)$$

 \rightarrow electron slips relative to forward radiation by $\Delta L = L (1 - \beta_z) \sim L (1 + K^2/2)/2\gamma^2$

X-ray FELs and LCLS-II-HE, Oxford, November 2022

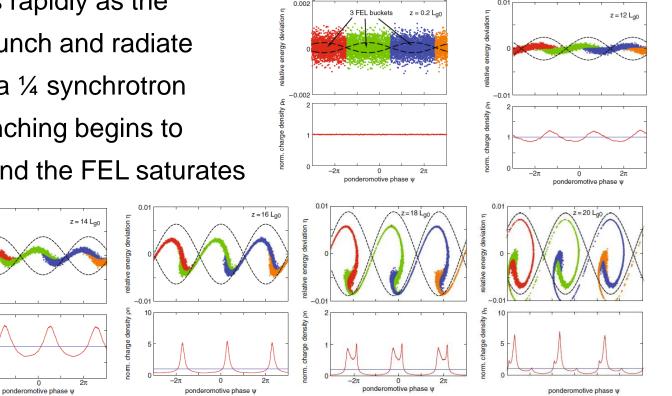
FEL Resonance Condition – Energy Transfer


Is there a way to couple the beam to the radiation field? To transfer energy $dW = \mathbf{F} \cdot \mathbf{ds} = -e \mathbf{E} \cdot \mathbf{v} dt$



Match the radiation wavelength to the electron velocity so the radiation field slips forward one period every oscillation $\rightarrow \lambda_r = \lambda_u (1 + K^2/2) / 2\gamma^2$

But the electron bunch is long compared to the radiation λ_r so how do we get net energy transfer to (or from) the radiation?


Particles with higher energy are deflected less in the undulator field \rightarrow gain on nominal energy while low energy particle slip relative to the nominal energy \rightarrow bunching with lengths $<< \lambda_r$ leading to coherent radiation

Evolution of the FEL Microbunching

FEL bucket grows rapidly as the beam begins to bunch and radiate coherently. After a ¼ synchrotron oscillation the bunching begins to Decrease again and the FEL saturates

X-ray FELs and LCLS-II-HE, Oxford, November 2022

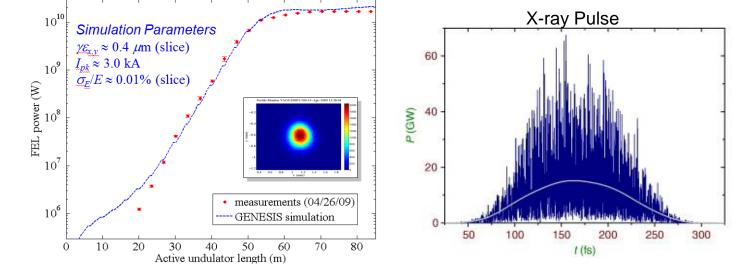
energy deviation

relative

charge density

-0.0

-21

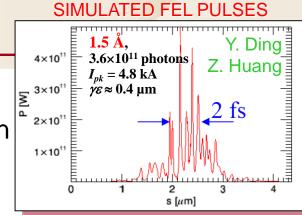

From P. Schmuser et al.

SASE Amplifier FEL Characteristics

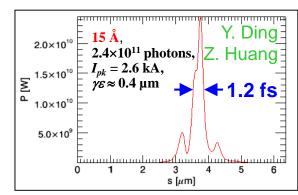
Self-Amplified Spontaneous Emission

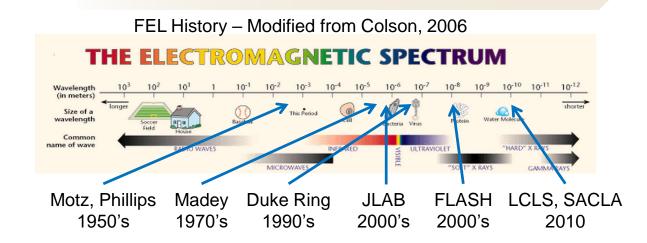
Amplifiers can start from a seed or noise (SASE)

- Typical SASE bandwidth is ~0.1%; seeded BW >10x smaller
- Transverse coherence usually >50%


Generate GW's of peak power in short pulses <1ps

SASE Temporal Coherence


- Single pass SASE FEL starts from noise and the light is still temporally chaotic unless the correlation length is comparable to the bunch length
- Slippage length is ~ (L_g * λ_r / λ_u) with no phase correlation between portions
- Would like to have transform limited pulses



Simulation at 1.5 Å based on measured injector & linac beam & *Elegant* tracking, with CSR, at 20 pC.

Simulation at 15 Å based on measured injector & linac beam & *Elegant* tracking, with CSR & 20 pC.

Operating Free Electron Lasers

Over 50 FEL's operating around the world ranging from mm-wavelength to sub-Angstrom.

- JLAB generated 14 kW in IR in oscillator configuration
- LCLS generated 7 mJ in single pulse at a few keV
- EuXFEL has operated with SRF and high beam power since 2017
- SACLA, EuXFEL, and LCLS have lased at sub-Angstrom wavelengths

X-ray FELs and LCLS-II-HE, Oxford, November 2022

The Linac Coherent Light Source Concept: Fourth Generation Workshop, >30 Years Ago

C. Pellegrini, <u>A 4 to 0.1 nm FEL Based on the SLAC Linac</u>,

Workshop on Fourth Generation Light Sources, February, 1992 Based on theoretical work done in 80's

Claudio Pellegrini

Herman Winick

Herman Winick's Study Group

SOURCE

Karl Bane Jeff Corbett Max Cornacchia Klans Halbach (LBL) Albert Hofmann Kwang-je Kim (LBL) Phil Morton Heinz-Dieter Nuhn Clandio Pellegrini (UCLA) Tor Raubenheimer John Seeman Roman Tatchyn Herman Winick

SCIENTIFIC CASE

Art Bienenstock Keith Hodgson Janos Kirz (SUNY-Stony Brook) Piero Pianetta Steve Rothman (UCSF) Brian Stephenson (IBM)

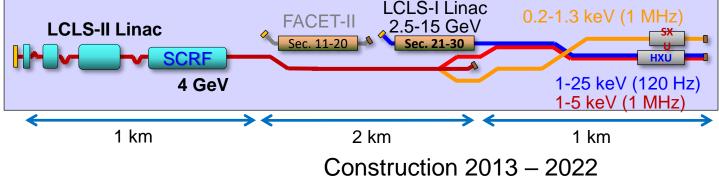
The Linac Coherent Light Source (LCLS) X-ray FEL

The LCLS was the world's1st x-ray Free Electron Laser (FEL) in 2009

- LCLS electron source is the SLAC
 Cu RF linac at 120 Hz using ¹/₃ SLAC linac
- Includes one 3cm fixed gap undulator
- Six experimental stations
- Based on 15 years of focused R&D

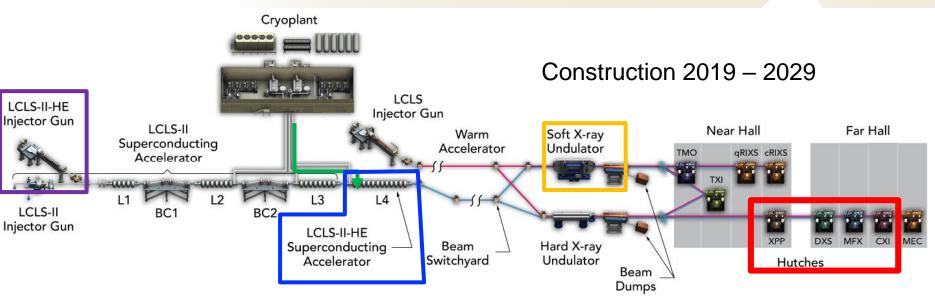
Initial Parameter Goals

X-ray Range	250 to 11,300 eV				
FEL Pulse Length	< 5 - 500 fs				
FEL Pulse Energy	~3 mJ (2 * 10 ¹² @ 10 keV)				
Repetition Rate	120 Hz				



All parameters exceeded

LCLS-II Upgrade New Superconducting Linac with MHz-rate → LCLS Undulator Hall


- Two sources: MHz rate SCRF linac and 120 Hz Cu LCLS-I linac
- Hard and Soft X-ray undulators can operate simultaneously in any mode

X-ray FELs and LCLS-II-HE, Oxford, November 2022

LCLS-II High Energy Upgrade Increase MHz-rate photon energy from 5 keV → 20 keV

- 1. Add 23 additional cryomodules (L4 linac) to double the LCLS-II accelerator energy: 4 GeV to 8 GeV
- 2. Install new cryogenic distribution box and transfer line between the cryoplant and the new L4 linac
- 3. New long period soft X-ray undulator
- 4. Upgrade the LCLS hard X-ray instruments for MHz beam and data rates
- 5. Design low-emittance injector and SRF gun for extended hard X-ray performance

New SCRF linac Linac Coherent Light and injector in 1st km of SLAC linac Source Facility and LCLS-II (HE) Upgrade (1st light 2023) (2nd light 2028)-Existing Linac (1

Electron Transfer Line (340 m)

2-km poin

Near Experiment Hall

Far Experiment Hall

Transport Line

(200 m)

ndulators (13

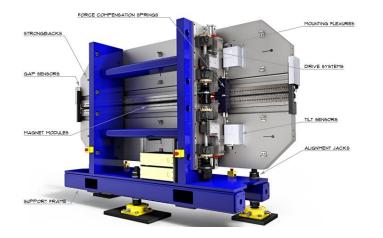
Technical Challenges of the LCLS-II

The LCLS-II builds on the developments from the X-ray FEL program around the world

• Leveraged many of the LCLS design concepts

New challenges:

- Variable gap undulators \rightarrow Commissioned
- CW superconducting RF system with >16 MV/m gradient and high Q₀ cavities → Commissioning started
- High brightness CW injector \rightarrow Commissioned
- Dynamics in high brightness, low-energy electron beams \rightarrow TBD

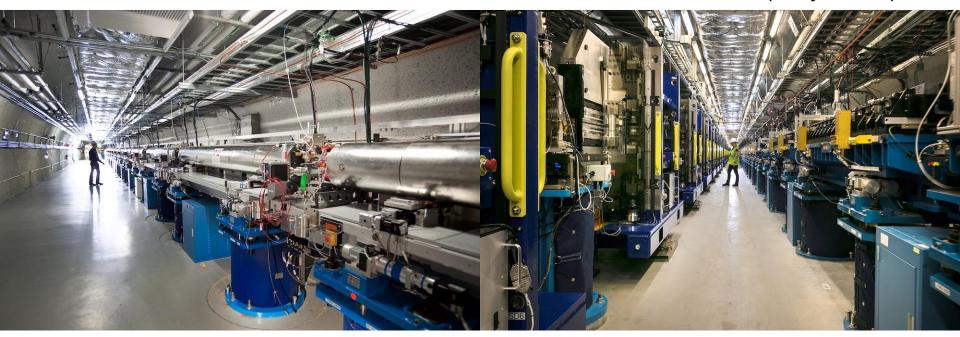

Commissioning started with 1st light from SRF linac expected in 2023

LCLS-II Variable Gap Hybrid Undulators

Installed two new undulators in LCLS Undulator Hall

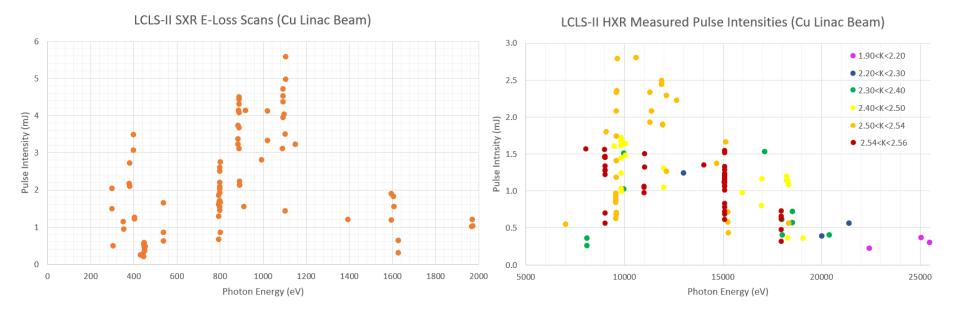
Variable gap undulators used in LCLS-II to provide greater wavelength tuning flexibility than in LCLS:

- standard vertical gap for Soft X-rays with 39 mm period (250 eV 2 keV)
- a horizontal gap Vertically Polarized Undulator for Hard X-rays with 26 mm period (few keV – 25 keV)

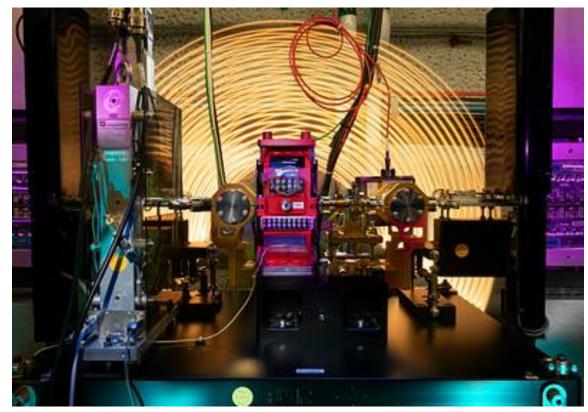


LCLS-II Undulator Installation

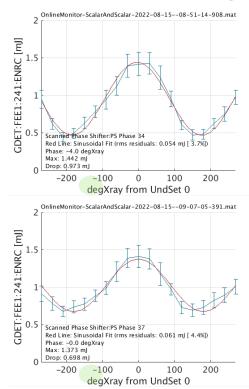
SLAC Undulator Hall (May 2015)

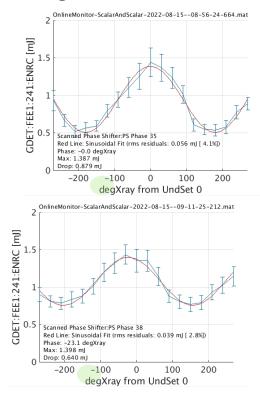

SLAC Undulator Hall (May 2020)

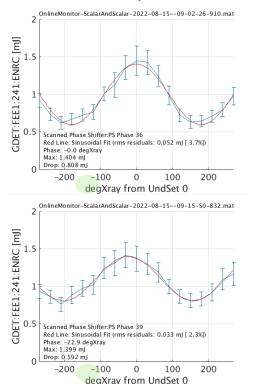
SXR ~ 90 meters HXR ~ 150 meters


HXR and SXR Undulator Performance

Generating very intense pulses with few 10¹³ photons per pulse at 1 keV to few 10¹¹ at 25 keV


LCLS-II Undulator Segment Interspace


- Undulator segments are ~3.5 meters on movers to position
- Need focusing, diagnostics, and path length control between segments
- BPMs are X-band cavity BPMs with <1um resolution at 10 pC



LCLS-II Undulator PM Phase Shifters

Need to control path length between undulators $<<\lambda_r$

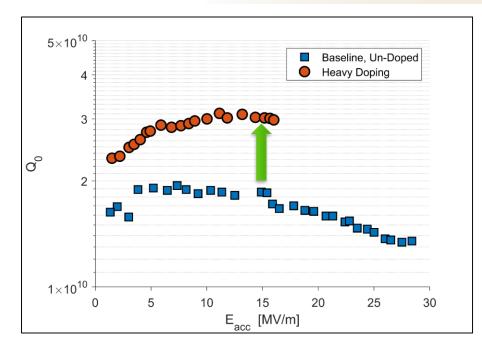
LCLS-II: First 1000m of SLAC Linac

Grade Level Access for Cryomodule install

960 m NC RF removed LCLS-II: 450 m cold 296 m SC RF LCLS-II-HE: 250 m cold 170 m SC RF LCLS Total SRF: 700 m cold 466 m SC RF

LCLS-II SRF Linac is Installed

LCLS-II (HE) Cryomodules 60 new 1.3 & 3.9 GHz Cryomodules being installed in SLAC linac tunnel

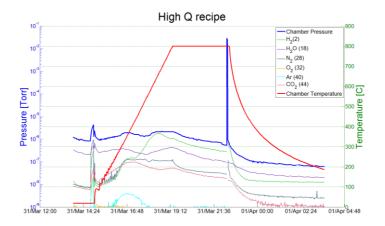

Cryomodules are being fabricated at FNAL and JLab

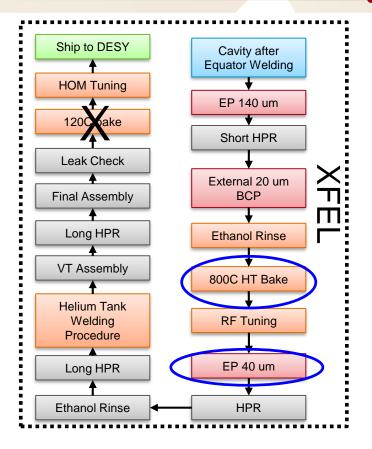
9-cell $\pi/2$ cavity at 1.3 GHz; L = 1.038m; R/Q ~ 1036; Q > 3x10¹⁰

Nitrogen-Doping and LCLS-II

Critical development to reduce cryogenics

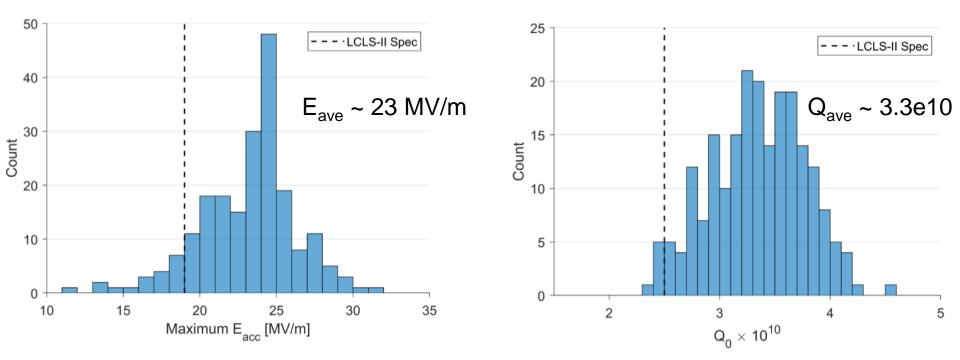
- All cavities for LCLS-II are produced with nitrogen-doping
- Q is improved by 2 mechanisms:
 - Higher starting Q₀
 - Anti-Q slope
- Both of these are a resulting of a changing R_{BCS}
- Developed by collaboration with Fermi, Jlab, & Cornell

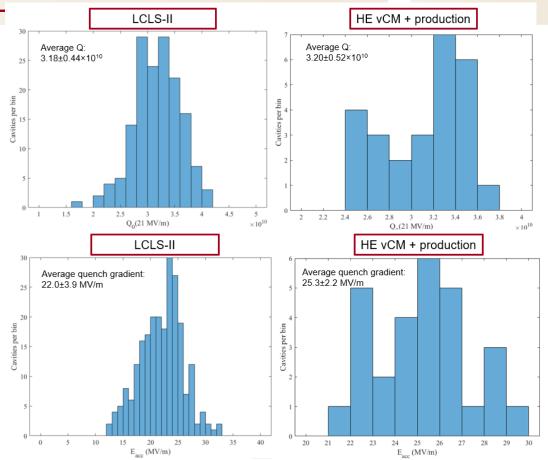

 Q_0 's of >3x10¹⁰ can consistently be produced


Nitrogen doping treatment

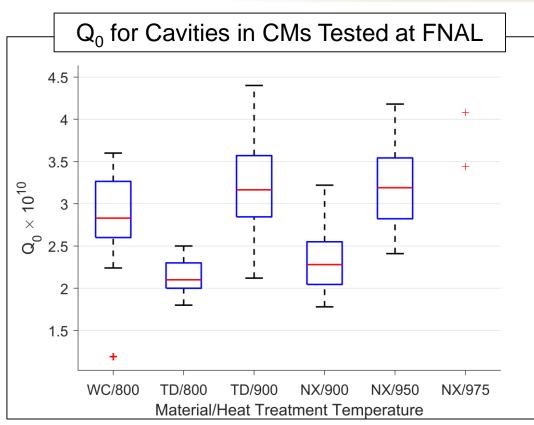
Small variation from standard XFEL/ILC processing recipe

Example from FNAL 2/6 doping process:


- Bulk EP
- 800 C anneal for 3 hours in vacuum
- 2 minutes @ 800C nitrogen diffusion
- 800 C for 6 minutes in vacuum
- Vacuum cooling
- 5 microns EP


LCLS-II Cavity Production N₂-doping improved Q₀ by >2x

Cavity E_{acc} and Q₀ for *final* LCLS-II production process



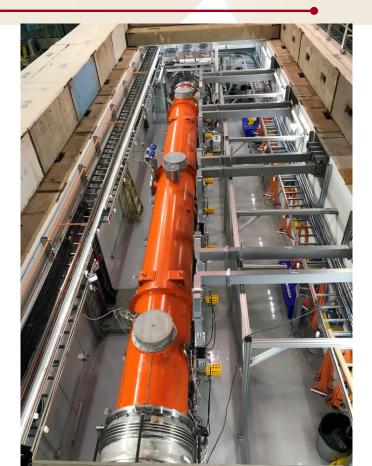
LCLS-II-HE further improved techniques

Choose *lighter* N₂ doping, to produce cavities with higher mean free paths than LCLS-II cavities and possibly choose longer anneal times, to produce a very uniform doped layer. Two new processes: 2 / 0 and $3/60 \rightarrow$ selected 2/0

Cryomodule Q₀ and Flux Expulsion

- Prototype cavities typically showed Q₀ above spec
- TD/800 cavities are consistently below spec
- TD/900 cavities consistently far exceed the spec
- NX/900 cavities perform similarly to the TD/800 cavities and do not meet spec
- NX/950/975 cavities perform similarly to TD/900

LCLS-II and LCLS-II-HE Cavity / CM Lessons


- 1. Vendor oversight and fabrication
 - Many challenges implementing and repeating desired process
- 2. Cavity material and annealing temperature for flux exclusion
 - Material variations required different treatment process
- **3.** Fast cool-down for high Q0
- 4. Balance between final EP, N₂-doping, and oxide layer
 - Surface finish sensitivity to EP voltage and **temperature**
- 5. CM design for microphonics, shipping, stability, ...

LCLS-II-HE Cryomodule Development Testing the vCM (HE 1st unit Cryomodule)

Demonstration of LCLS-II-HE CM Culmination of High Gradient R&D and development of new N₂-doping protocol

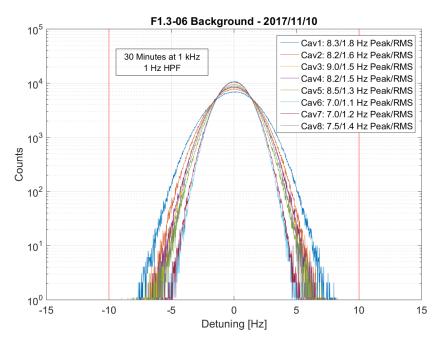
Excellent gradient performance (25.0 MV/m versus requirement of 20.8 MV/m) Meets Q₀ requirements at PL ($3.0x10^{10}$ at PL $\rightarrow 2.7x10^{10}$ installed)

No measurable field emission! (critical for high gradient CW operation)

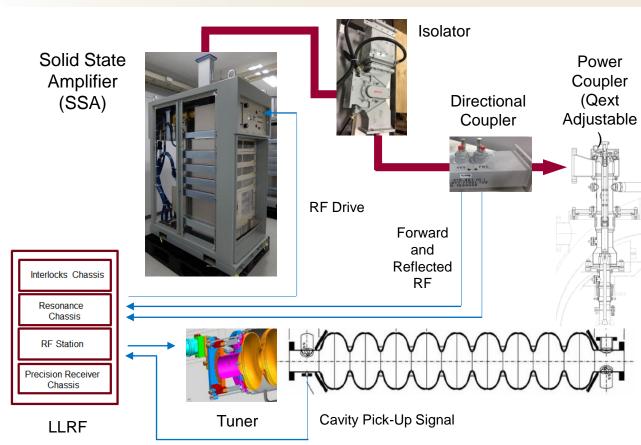
LCLS-II-HE Cryomodule Development Plasma Processing R&D

Demonstrated Plasma Processing cleaning technique in CM for further improvement

 In 4 cavities processed, multipactoring in couplers improved. Processing did not negatively impact other performance metrics

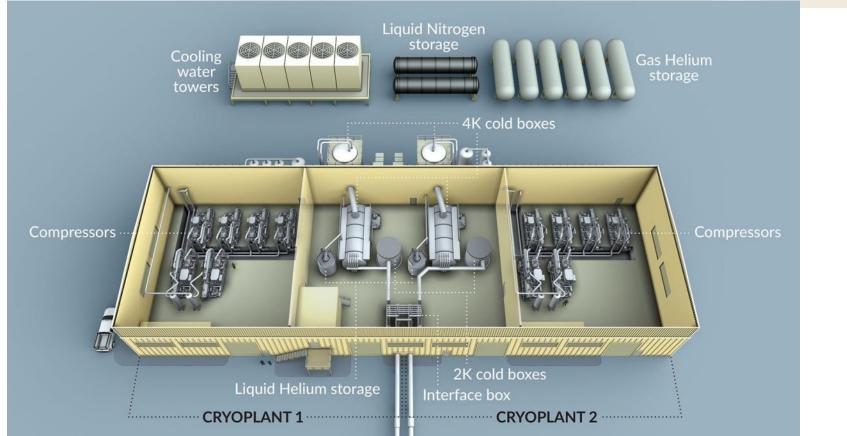

Plasma Processing is a potential **risk mitigation** tool to improve poorly performing CM for LCLS-II-HE and LCLS-II before or after installation

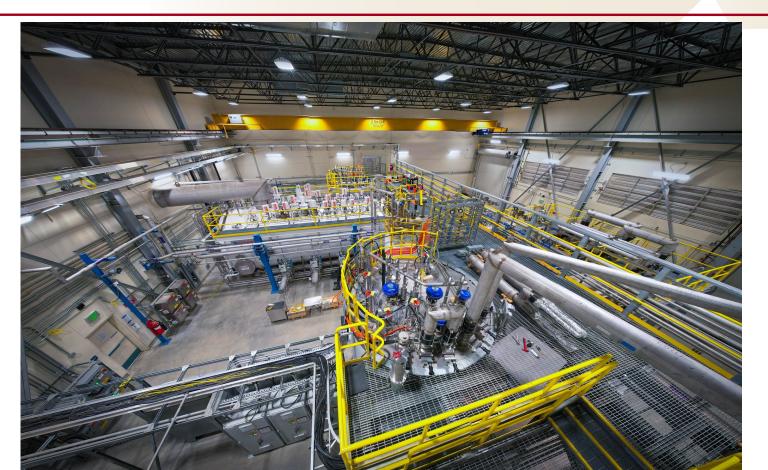
	Before Plasma Processing				After Plasma Processing			
Cavity #	Max E _{acc} [MV/m]	Usable E _{acc} [MV/m]	Q₀ @ 21MV/m, 2K	MP quenches	Max E _{acc} [MV/m]	Usable E₄cc [MV/m]	Q₀ @ 21MV/m, 2K	MP quenches
1	23.4	22.9	3.0E+10	Y	23.8	23.3	3.4E+10	
2	24.8	24.3	3.0E+10	Y	25.2	24.8	3.2E+10	Y
3	25.4	24.9	2.6E+10	Y	26.0	26.0	3.4E+10	Y
4	26.0	26.0	3.2E+10	Y	26.0	26.0	3.2E+10	
5	25.3	24.8	2.9E+10	Y	25.5	25.0	2.8E+10	
6	26.0	25.5	3.4E+10	Y	26.0	26.0	3.2E+10	Y
7	25.7	25.2	3.4E+10	Y	25.9	25.4	3.3E+10	Y
8	24.4	23.9	2.7E+10	Y	24.7	24.2	2.6E+10	
Avg	25.1	24.7	3.0E+10		25.3	25.1	3.1E+10	
Total	209	205			210	208		


SRF Cavity Detuning Requires a large RF power overhead

- RF power depends quadratically on microphonic cavity detuning
- For a Gaussian distribution with sigma = 1.7 Hz only one cavity per day in the linac would exceed our 10 Hz max assumption - measured sigma's are typically < 1.7 Hz
- The LLRF system has ability to allow active detuning compensation with piezo actuators if needed.

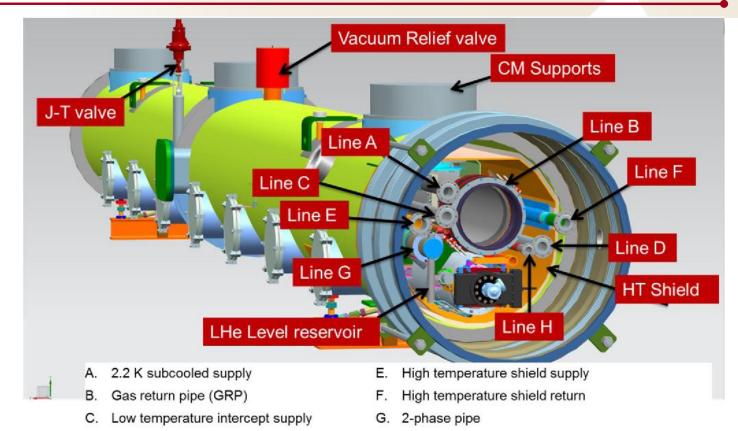
Detuning Distribution Measured at FNAL for CM06


RF Power Generation and Transport

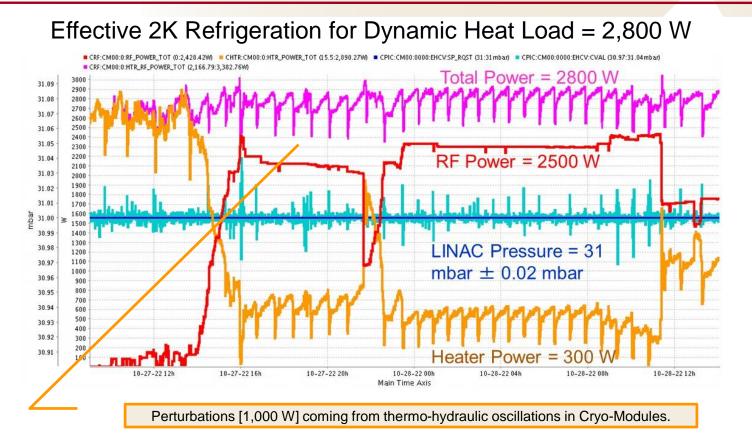

Consider accelerating a 62 uA beam on-crest at 18 MV/m with Qext = 6e7

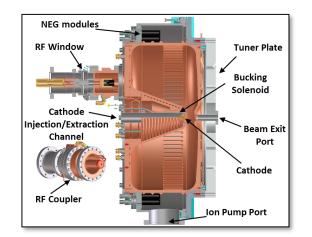
1.2 kW required to accelerate the beam (i.e., $I_b \times V_c$) 2.1 kW input power required with no detuning or overhead 3.3 kW input power with 10 Hz detuning 3.9 kW source power for 10 Hz detuning and overhead for 8% transport losses and 8% gradient regulation margin


LCLS-II Cryogenics Cavities must be cooled to 2K and extract ~ 8 kW of heat


LCLS-II Cryogenic plant

LCLS-II Cryoplant Compressor Room


Cryogenic Distribution


D. Low temperature intercept return

H. Warm-up/cool-down line

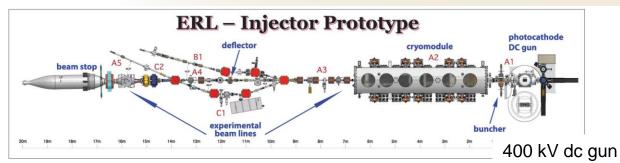
CRYOPLANT #1: LINAC 2K Refrigeration

The LCLS-II VHF RF Gun Based on LBNL APEX NC RF Gun

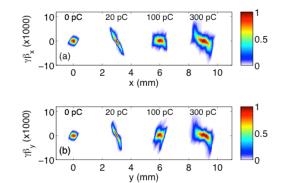
LBNL normal-conducting scheme satisfies X-FEL requirements

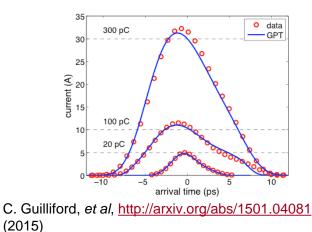
J. Staples, F. Sannibale, S. Virostek, CBP Tech Note 366, Oct. 2006.

K. Baptiste, et al, NIM A 599, 9 (2009).


Frequency (7 th sub-Harmonic of 1.3 GHz)	186 MHz
Operation mode	CW
Gap voltage	750 kV
Field at the cathode	19.5 MV/m
Q ₀ (measured)	>30000
Shunt impedance	6.5 MΩ
RF Power @ Q ₀	80 kW
Peak surface field	24.1 MV/m
Peak wall power density	20.0 W/cm ²
Accelerating gap	4 cm
Diameter/Length	69.4/35.0 cm
Operating pressure	~ 3 10 ⁻¹⁰ Torr

- At VHF, cavity is large enough to withstand heat load and operate in CW mode at required gradients
- Long λ_{RF} allows large apertures and thus high vacuum conductivity
- Deliver $\gamma\epsilon$ < 0.4 um-rad at 100 pC with 20 MV/m gradient




LCLS-II Injector Feasibility R&D

Nominal transverse parameters demonstrated at Cornell

Bunch charge	Peak current	Emittance (95%)
20 pC	5 A	0.25 μm
100 pC	10 A	0.4 μm
300 pC	30 A	0.6 μm

LCLS-II NC RF Gun

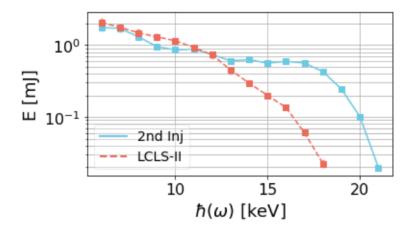
LCLS-II Gun and Low-Energy Beamline Installed

- The LCLS-II Injector uses a 750 kV VHF RF (186 MHz) gun based on the APEX gun at LBNL
- Relatively high energy allows higher brightness and simple capture cavities

LCLS-II Injector Commissioning

- Systems operational after addressing many significant problems:
 - Fully established reliable 24/7 CW RF operation of gun and buncher
 - Commissioned all essential diagnostics which are working
 - Certified all BCS safety systems including ACMs/LBLMs
- Characterized e-beam performance:
 - Achieved about 0.75um emittance at 80MeV for 50pC charge, close to 0.4um of design. Further optimization is under way.
 - Measured 0.8mm of bunch length, meeting with design
- Characterized gun dark current (~4uA), which is much larger than expectation.
 Effective mitigation is in place:
 - ~90% of dark current lost on a recently installed circular collimator before CM01 (<1MeV)
 - ~10% dark current lost on a fixed collimator after CM01 (>80MeV)
 - <1% of dark current is measured on ACMs before COL0 collimators

X-ray FELs and LCLS-II-HE, Oxford, November 2022


Provide lower emittance beams to extend photon energy reach, enabling a broader photon physics program

 Less costly than increasing beam energy, which is currently limited by space constraints

Provide redundant electron source

- Qualify second injector while current one operates
- Once online, could quickly revert to original injector if problems occur
- In the interim, a spare LCLS-II gun with modest improvements is being built

Photon Pulse Energy vs Photon Energy

Injector Approaches for Low Emittance, High Brightness Beams

Low duty \rightarrow high gradient, high frequency RF

 \rightarrow short laser pulse \rightarrow high peak current

• 'Pancake' emission brightness

$$\frac{Q}{\epsilon^2} \propto \frac{E_{emission}}{MTE}$$

LCLS (120 Hz):

- 120 MV/m, 2.9 GHz NC Gun
- 6 MeV beam from Gun
- 6 ps FWHM laser pulse
- Copper MTE ~ 400 meV

High duty \rightarrow low gradient, low frequency RF

 \rightarrow long laser pulse \rightarrow buncher \rightarrow high peak current

[•] 'Cigar' max emission brightness

$$\frac{Q}{\epsilon^2} \propto \frac{E_{emission}^{1.5}}{MTE} \frac{t_{laser}}{\sqrt{R_{laser}}}$$

MTE = Mean Transverse Energy of Photo-Emitted Electrons

LCLS-II (CW)

- ~ ~ 20 MV/m, 186 MHz NC Gun
- 750 keV beam from Gun
- 20-60 ps FWHM laser pulse
- Cs2Te MTE ~ 400 meV

Goals: Increase gradient to 30 MV/m and halve MTE

X-ray FELs and LCLS-II-HE, Oxford, November 2022

LCLS-II-HE LEI and LCLS-II Injector Layout

A high-gradient SRF photocathode gun has been an aspiration for decades. Conceptually has many benefits including high gradient operation, low field emission, and good vacuum for photocathode survival. LCLS-II-HE started R&D LowEmittance program to generate 100 pC Existing LCLS-II Injector with $\gamma \epsilon < 0.1$ um-rad

Cryomodule

Buncher

Low-Energy Beamline

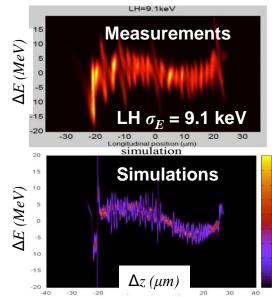
SRF Gun

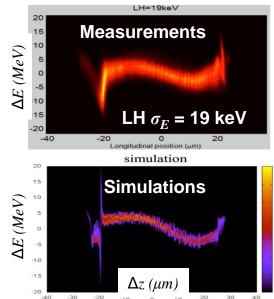
Cathode Load-Lock

FEL physics is well understood **provided** beams are well modeled

LCLS-II-HE is being extensively modeled using 3D PIC codes

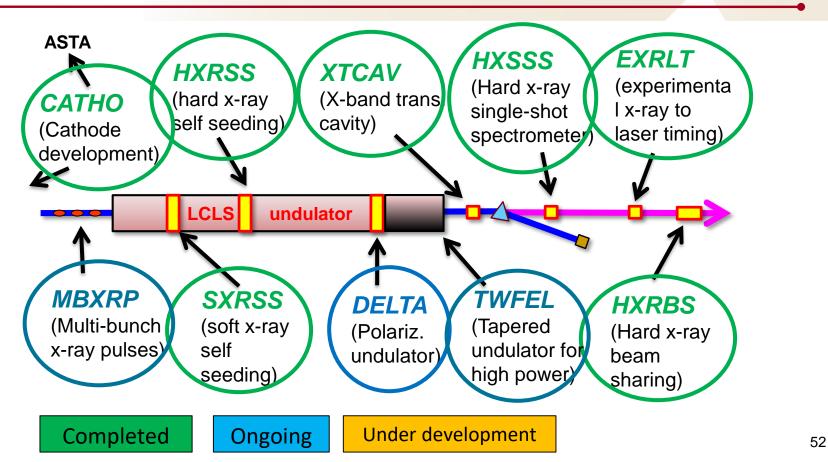
- Using 1-to-1 models with same number of macro-particles as beam electrons
- Simulation runs are made using LBNL Edison Cray XC30

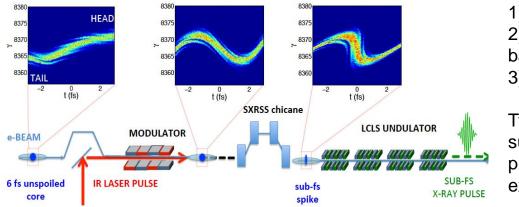

High brightness beams at modest energy and long transport → new longitudinal micro-bunching instabilities


Full S-2-E simulations using IMPACT and GENESIS are being performed

Benchmarking Micro-Bunching (µBI) Effects

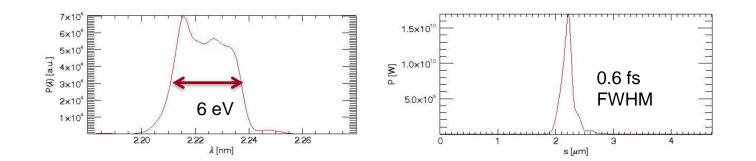
New μ BI effects being studied for LCLS-II & HE using high-fidelity simulation codes (IMPACT and Elegant) and analytic models


Benchmarking codes against LCLS measurements

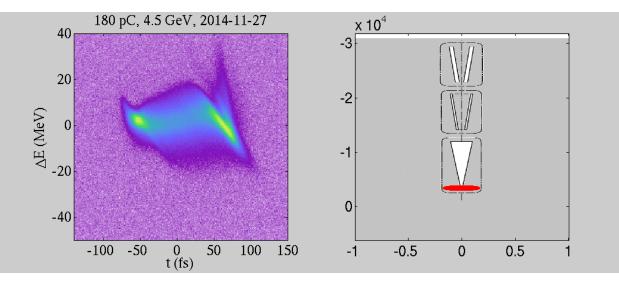


Examples of R&D in support of LCLS Operations/Science

Many additional programs ongoing



R&D Example: XLEAP – sub-fs X-ray pulse R&D program Operating for Users at LCLS and upgrades in planning for LCLS-II/HE


- <1 fs pulse duration.
 Multi eV coherent bandwidth.
- 3) ~20 uJ pulse energy.

Two-color operation with sub-fs jitter for x-ray pump/x-ray probe experiments

R&D Example: Two bunches and pulse length control 'slotted' foil in dispersive region with energy chirp (x-t correlation)

- Added pulsed kickers to control up to 4 bunches on single RF pulse (few 200 ns sep.)
- Slotted foil for single and double short pulses

 Developing laser heater shaping as well as XLEAP technique for pulse length control in LCLS-II (<1 to 5 fs pulses)

Summary

LCLS-II has begun commissioning with 1^{st} light expected in 2023 with 0.2 - 5 keV Builds on existing XFEL and SRF development plus:

- High Q0 CW SRF cavities based on N₂-doping process for 4 GeV CW linac
- High brightness injector
- Novel variable gap undulators
- Advanced simulations of high brightness beams

LCLS-II-HE will extend spectral range >20 keV with commissioning in 2027

- Further increase LCLS-II cavity gradients with improved doping to exceed 21 MV/m while limiting field emission will be critical to increase SRF linac energy to 8 GeV
- New SRF gun for 2x reduction of beam emittance and significant improvements in beam brightness at undulator

Ongoing R&D program on beam manipulation and control to expand operating modes

Questions?