20 years of photo electrons at the Photo Injector Test facility at DESY in Zeuthen (PITZ): High brightness electron sources and their applications

Frank Stephan for the PITZ collaboration

Sincere thanks to all cooperation partners helping to make PITZ a success!

Outline of the talk

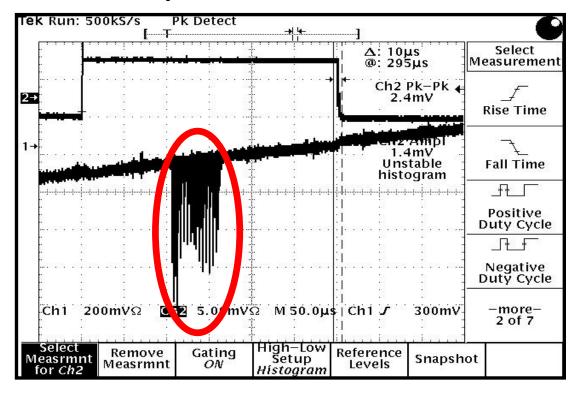
high brightness electrons sources for X-ray FELs

- → beam driven plasma acceleration
- → first high power THz SASE FEL
- → cancer therapy

Why the talk now?

Photo injector developments for high brightness beams to drive X-ray FELs:

- Why PITZ was started
- R&D for high brightness beams: a) progress on emittance reduction,
 - b) summary of gun developments
 - c) photo cathode laser developments
 - d) photo cathode developments

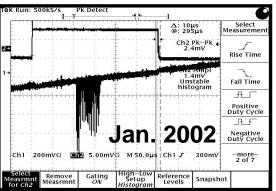

Other high brightness beam applications:

- Tests towards UED studies
- R&D on beam driven **plasma acceleration**: a) experimentally proving self-modulation instability
 - b) high transformer ratio measurements
- Generating beam modulations via dielectric lined waveguides
- THZ SASE FEL
- **FLASH radiation therapy** and radiation biology

20 Years ago: Start of beam operation at PITZ

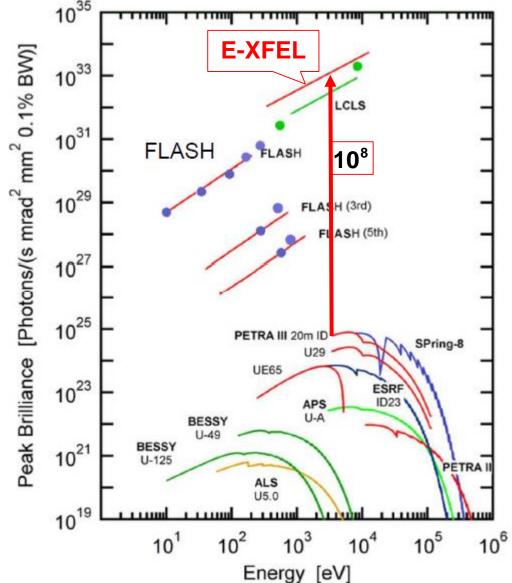
January 13th, 2002: First photo electrons at PITZ

Official start on 30.1.2002: Prof. Wagner and Prof. Wanka open the photo cathode laser shutter during the colloquium "10 years DESY in Zeuthen"


Early history of PITZ

- Q1/1999: request to BMBF to build gun test facilty independant from TTF
- September 1999: DESY directorate decision to build PITZ
- 2000: civil construction
- 2001: installation of infrastructure and first setup
- 13.1.2002: first photo electrons at PITZ
- November 2003: first characterized RF gun is sent to TTF2-FEL (FLASH)
- 2005: first operation with booster cavity (~13 MeV) at PITZ
- 2006: provide spare RF gun for FLASH

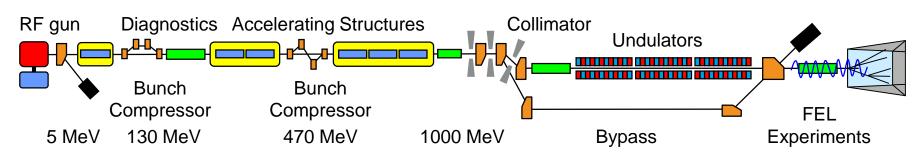
Why PITZ was started?


Motivation: Why the photo injector R&D was started at PITZ?

European XFEL - a next generation light source with unique capabilities

- wavelength down to 0.1 nm
 → atomic-scale resolution
- ultra-short pulses (≤ 100 fs)
 → ultra-fast dynamics,
 "molecular movies"
- ultra-high peak brilliance
 → investigations of matter under extreme conditions (Xe²¹⁺)
- transverse spatial coherence
 → imaging of single nanoscale objects, possibly down to individual macromolecules (no crystallisation needed !!)

Why brilliance is ~10E+8 higher? Synchrotrons: $P \sim N \cdot e^2$ FELs (coherence): $P \sim (N \cdot e)^2 = N^2 \cdot e^2$, $N \sim 10E+8$


XFEL key component: → high brightness electron source

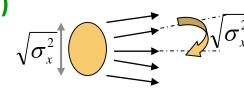
Why electron injector is so important???

property of linacs: beam quality will DEGRATE during acceleration in linac

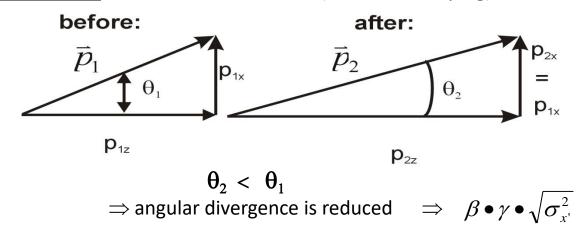
electron source has to produce lowest possible emittance!!

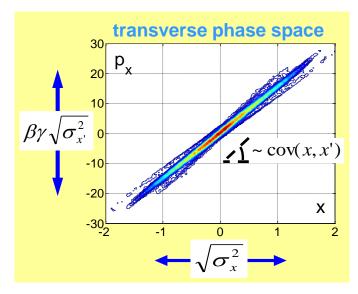
Example soft x-ray SASE-FEL: original FLASH design

- electron source
- accelerating sections → e.g. wakefields, coupler kicks
 - in between: bunch compressor(s) → e.g. coherent synchrotron radiation (CSR)
- **undulator** to produce FEL radiation
- electron beam dump
- photon beamline(s) for the users



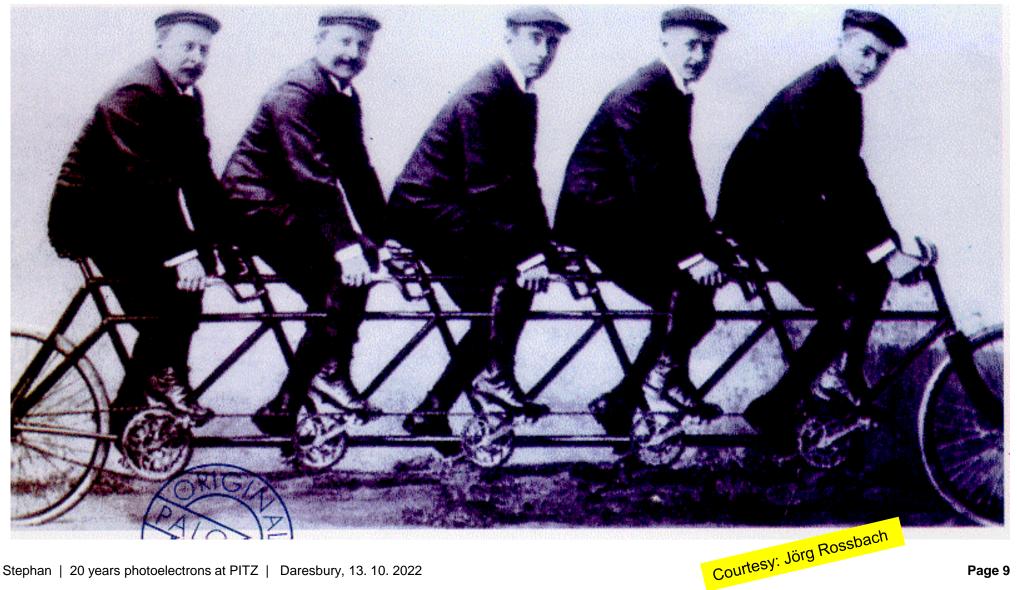
Emittance – a measure of the beam quality


ϵ = 6 dimensional phase space volume occupied by given number of particles


long.: $\mathcal{E}_{z} \sim (e^{-b} \text{ bunch length}) \bullet (\text{energy spread of } e^{-b} \text{ bunch})$

trans.: $\mathcal{E}_{X,V}^{\sim}$ (e-beam size) • (e-beam angular divergence)

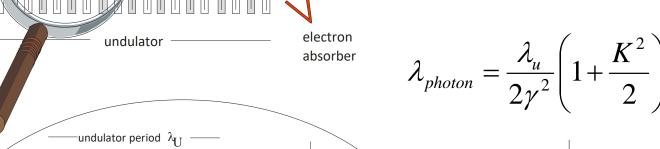
effect of acceleration on transverse emittance (adiabatic damping):

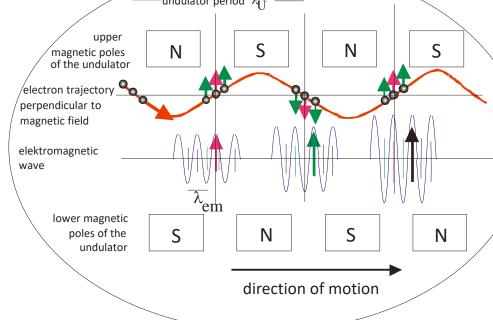

⇒ normalized RMS transverse emittance:

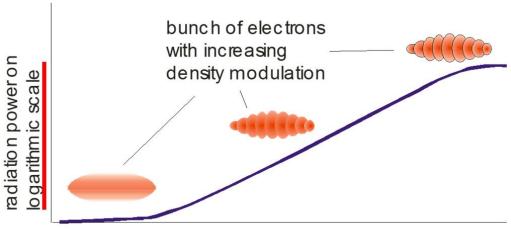
$$\epsilon_{x}^{n} = \beta \bullet \gamma \bullet \sqrt{\sigma_{x}^{2} \bullet \sigma_{x'}^{2} - cov^{2}(x, x')}; \quad \beta = \frac{v}{c}, \quad \gamma = \frac{1}{\sqrt{1 - \beta^{2}}}, \quad x' = \frac{dx}{ds}$$
(\varepsilon^{n} is conserved in general)

SASE FEL: How does it work?

Coherent motion is all we need !!

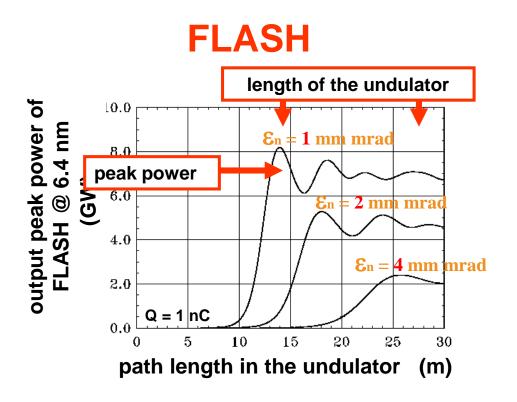


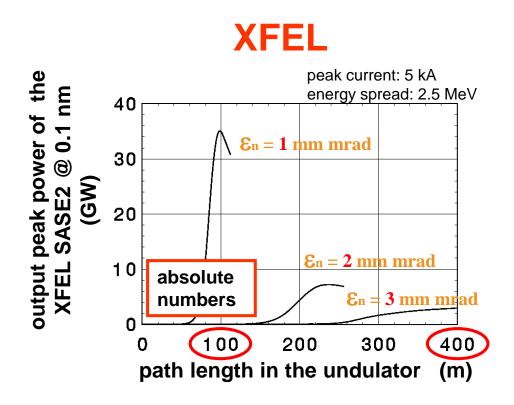



Page 9

SASE FEL: How does it work?

direction of motion

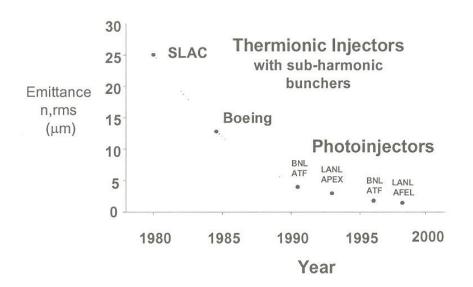

$$\lambda_{\min}[\text{nm}] \approx \frac{4\pi}{10} \frac{\varepsilon_n[\text{mm mrad}]}{\sqrt{I_p[\text{kA}] \cdot L_u[\text{m}]}}$$

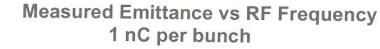


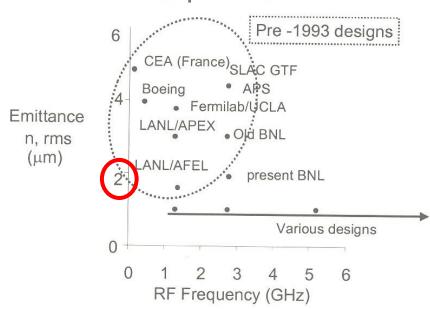
Why emittance must be small

smaller transverse emittance → higher X-ray power, shorter undulator needed, shorter wavelength possible

- original XFEL goal: 0.9 mm mrad@injector = 1.4 mm mrad@undulator
- if even smaller emittance ⇒ shorter wavelength, higher repetition rate




Situation on emittance in 1999

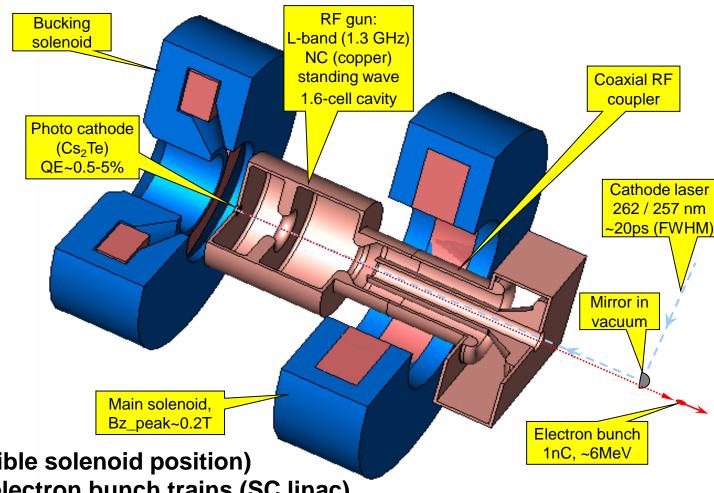

From ICFA workshop on high brightness beams at UCLA in autumn 1999

Summary talk of P. O'Shea (U Maryland, USA) on electron source developments:

Improvement in emittance over the past twenty years (1 nC bunch, Multi-MeV energy)

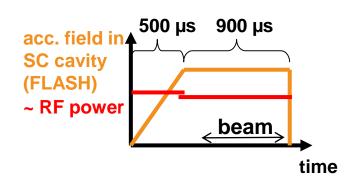
"Goal for community in next years:

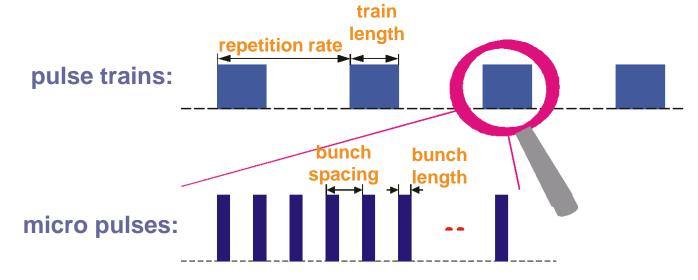
Get transverse normalized emittance of 1 mm mrad @ bunch charge of 1 nC



Most prominent solution to solve low emittance problem: Photo Cathode RF Gun

Example: PITZ gun




Main properties of PITZ gun:

1.3 GHz cavity, coaxial RF coupler (flexible solenoid position)
Capable of high average power → long electron bunch trains (SC linac)
Very low normalized transverse emittance

Some parameters of FLASH and European XFEL

A pulsed SC linac needs long bunch trains to run efficiently

			1
Parameters	FLASH	European XFEL	
final beam energy	1.2 GeV	17.5 GeV	
max. repetition rate	10 Hz	10 Hz	
max. train length	800 µs	650 μs → Gun	5 aims for 1ms!
bunch spacing	1 – 20 μs	0.2 – 1 μs	
required injector emittance (1 nC)	2 mm mrad	0.9 mm mrad	
SASE output wavelength	4 – 90 nm	0.05 – 4.7 nm	

DESY

Largest accelerator center in Germany, one lab - two locations: Hamburg + Zeuthen (near Berlin)

Facts and Figures

- publicly funded national research centre of the Helmholtz Association
- Employees at DESY
 - approximately 2700, including 1180 scientists
- Interdisciplinary research, international cooperation
- Research at DESY in 4 areas:
 - Accelerators
 - Photon Science (focus in Hamburg)
 - Particle Physics
 - Astroparticle Physics (focus in Zeuthen)

PITZ Collaboration Partners (formal contract signed)

contract on **green** photocathodes

Founding partners of PITZ:

- DESY. HH & Z (leading institute)
- HZB (BESSY) (A. Jankowiak): magnets, vacuum
- MBI (S. Eisebitt): cathode laser
- TU Darmstadt (TEMF, T. Weiland, H. DeGersem): simulations

Other national partners:

- Hamburg university
 - most PhD students;
 - HGF-Vernetzungsfond;
 - generation of short pulses
 - plasma experiments

• HZDR

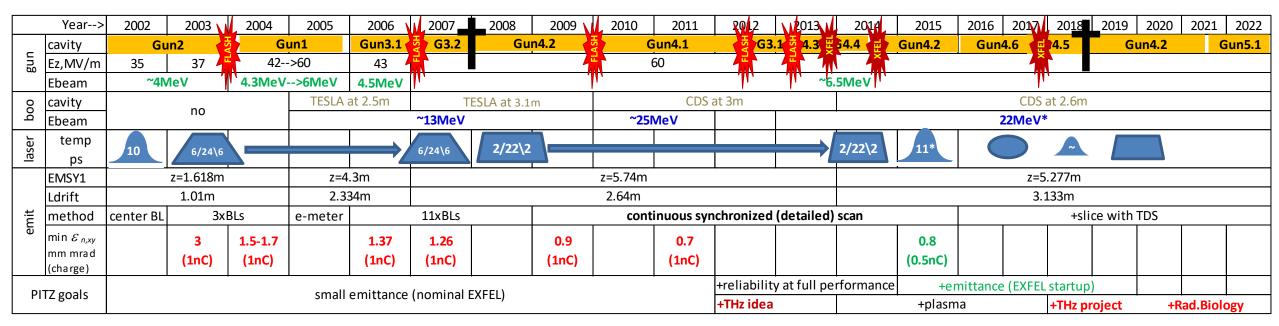
- BMBF-PC-laser-project between MBI, DESY and HZDR, until ~2009;
- collaboration between HZB, HZDR, MBI and DESY in SC-gun-cluster

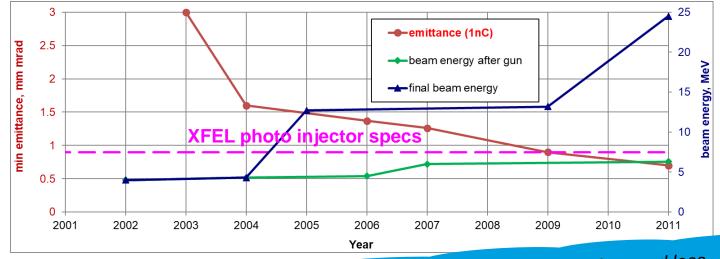
• TH Wildau:

- radiation biology and FLASH radiation therapy

• International partners:

- <u>IAP Nizhny Novgorod + JINR Dubna</u>: 3D elliptical laser pulses, THz radiation
- INFN Frascati + Uni Roma II (M. Ferrario, L. Palumbo): E-meter and TDS prestudies


- INFN Milano (C. Pagani): photocathodes
- INR Troitsk (L. Kravchuk): CDS, TDS, Gun5
- INRNE Sofia (D. Tonev, G. Asova): EMSY + personnel
- IJCLab Orsay (S. Bousson): HEDA1 + HEDA2
- <u>UKRI Daresbury</u> (D. Angal-Kalinin, B. Militsyn): phase space tomography
- Thailand Center of Excellence in Physics (T. Vilaithong, Ch. Thongbai): personnel
- AANL (YERPHI) (G. Karyan) + CANDLE (B. Grigoryan),
 Yerevan: personnel
- LBNL Berkeley (Th. Schenkel): PWFA, NC CW Gun
- SLAC (N. Holtkamp): LCLS-I undulators

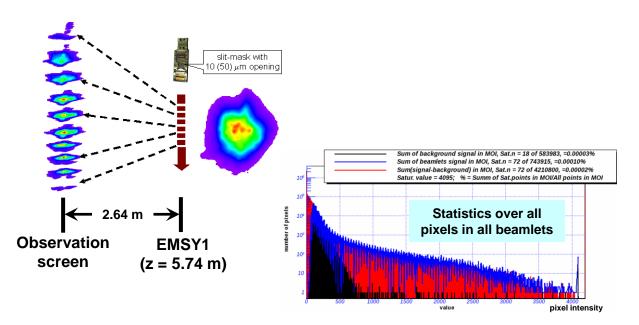


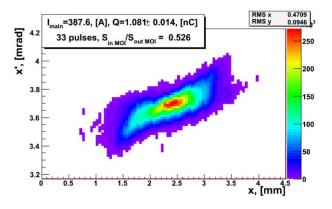
PITZ results on high brightness beams

PITZ evolution 2002 – 2022, Primary Goal: improve emittance!

Highlights:

- Increasing the brightness (decreasing the emittance)
- Improving gun stability and reliability
- Extending beam diagnostics
- Application of high brightness beams (PWFA, THz, radiation biology)





How we measure the transverse projected emittance

We primarily use the single slit scan technique

- Emittance Measurement SYstem (EMSY) consists of horizontal / vertical actuators with
 - **YAG** screens
 - **10** / 50 µm slits
- Beam size is measured @ slit position using screen
- Beam local divergence is estimated from beamlet sizes @ observation screen (12 bit camera)

2D corrected normalized RMS emittance

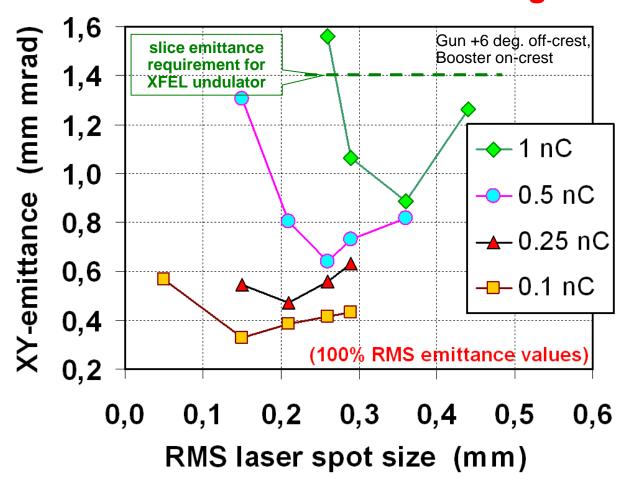
$$\varepsilon_n = \frac{\sigma_x}{\sqrt{\langle x^2 \rangle}} \beta \gamma \sqrt{\langle x^2 \rangle \cdot \langle x'^2 \rangle - \langle xx' \rangle^2}$$

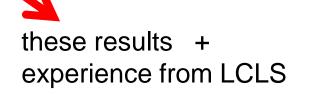
correction factor (>1) introduced to correct for low intensity losses from beamlet measurements

σ_x - RMS beam size measured with YAG screen at slit location

SQRT(<x²>) - RMS beam size at slit location estimated from slit positions and beamlet intensities

→ "100% RMS emittance"

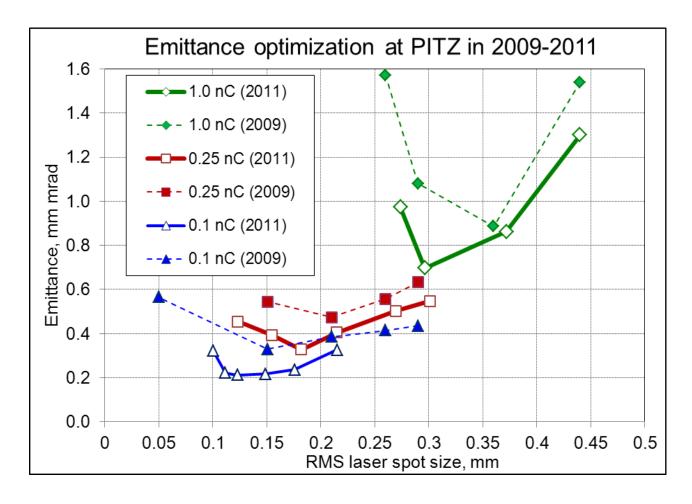




Emittanz results from 2009

see e.g. S. Rimjaem et al., NIM A 671 (2012) 62-75

Normalized projected emittance vs. laser spot size@cathode for different bunch charges



(only small degradation of slice emitt. from gun to undulator)

→ XFEL could be operated with 14 GeV beam energy (possibility to save ~33M€)

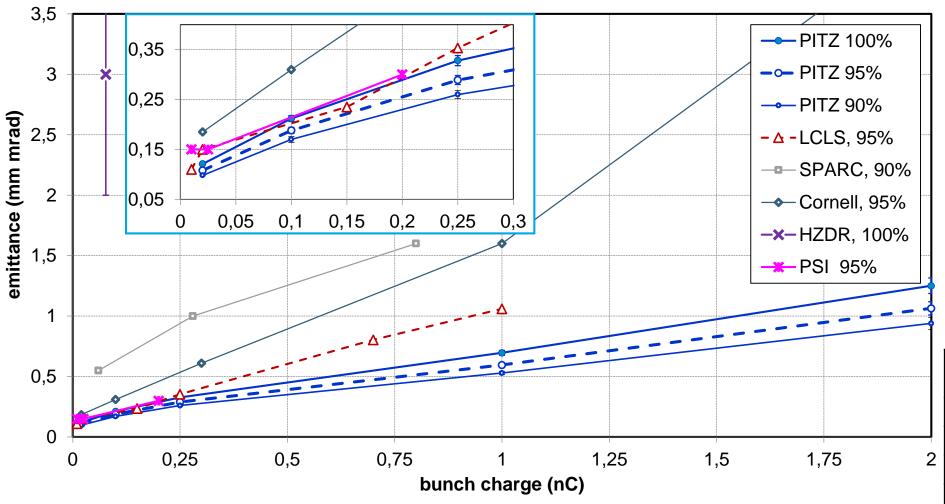
My point of view: it was a wise decision to still build XFEL with 17.5 GeV to use the energy headspace for future upgrades →CW

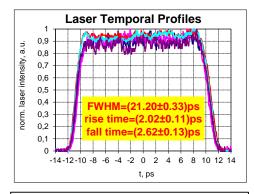
Emittance improvement between 2009 and 2011

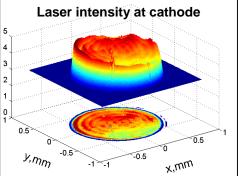
Improvements:

- Gun phase stability (10MW directional coupler + FB)
- Increased beam energy to ~25MeV (2009: <15MeV)
- Laser beam transport
- Removing magnetizable components

Q nC	ε(2011) mm mrad	δε (2011→2009) %
1.0	0.70	-20%
0.25	0.33	-30%
0.1	0.21	-35%


Higher emittance improvement for lower bunch charges due to better signal to noise ratio by using long pulse train operation


Measured RMS normalized emittance values

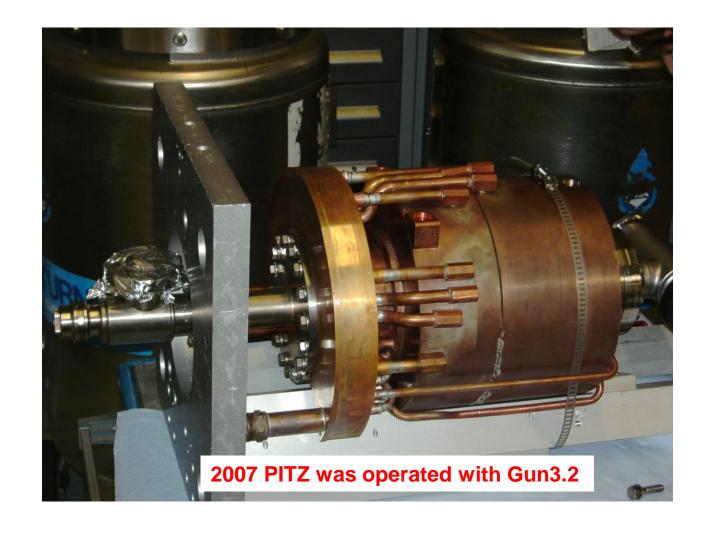

→ PITZ world record on projected emittance from 2011 still valid

see M. Krasilnikov et al., PRST-AB 15, 100701 (2012)

Photocathode laser

Minimum emittance measured at PITZ $(\sqrt{\varepsilon_{n,x}\varepsilon_{n,y}}, 100\%)$

Charge (nC)	Emittance (mm mrad) with stat. error
2	1.25±0.06
1	0.70±0.02
0.25	0.33±0.01
0.1	0.21±0.01
0.02	0.121±0.001

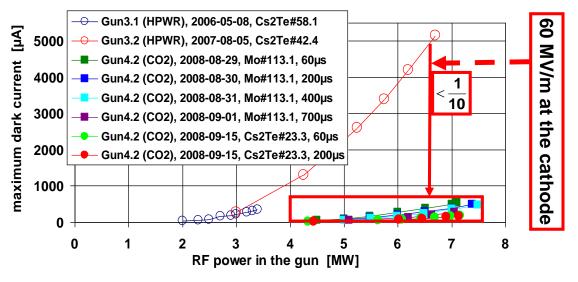

DESY.

RF gun cavity developments

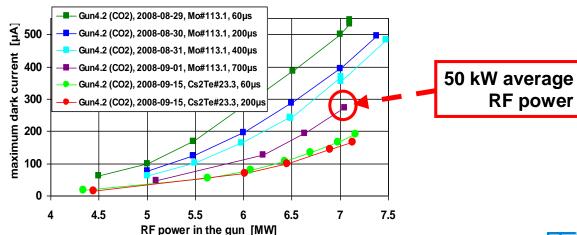
Modifications:

- Cooling water distribution
- Alignment capabilities
- Inner cell dimension "tuning"

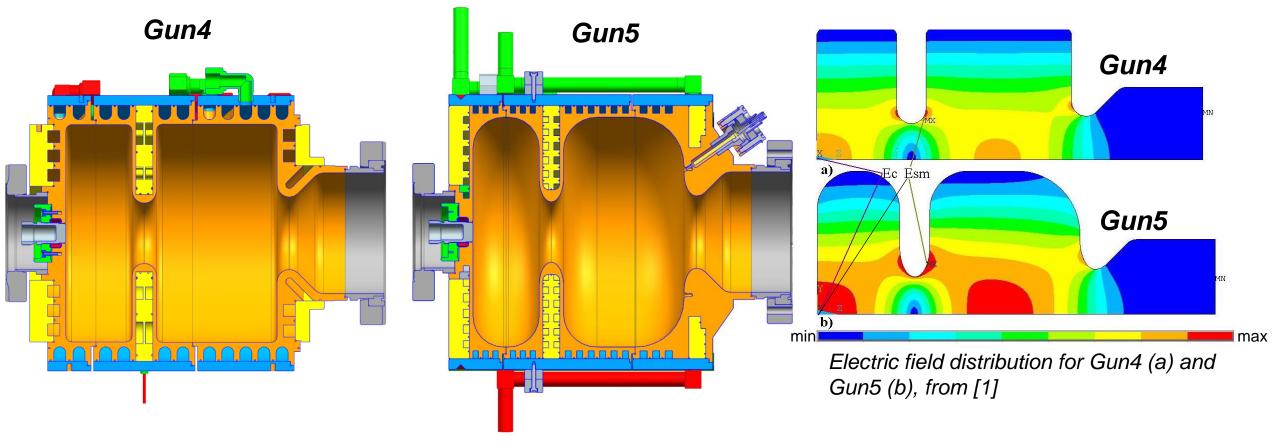
Reduction of dark current for high average power operation

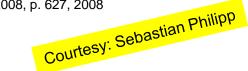

2008: Dry-ice sublimation-impulse cleaning allows reduction of dark current by factor 10 (!)

Vertical cleaning setup with 110° rotating nozzle.



Dark current measurements

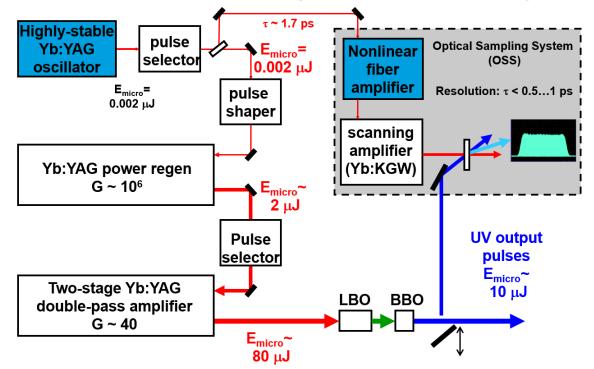

zoom:


Differences between Gun4 series and new Gun5 (latest design under test)

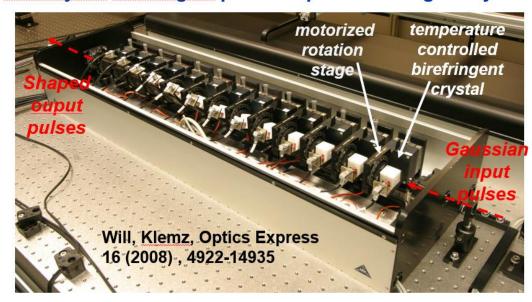
- Optimised cell shape for higher RF efficiency and reduced peak surface field for same cathode gradient
- Direct field measurements inside the Gun with the help of a RF probe
- Higher cooling efficiency (Gun 5: 61.3 kW average RF power, 6.13 MW for 1 ms @ 10 Hz; from [2])

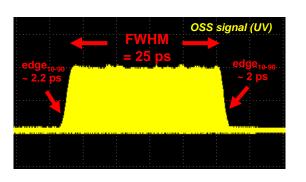
[1] V. Paramonov, Yu. Kalinin, M. Krasilnikov, T. Scholz, F. Stephan, K. Floettmann. RF Gun Development with Improved Parameters. Linac 2008, p. 627, 2008

[2] V. Paramonov, N. Brusova, I. Rybakov, A. Skasyrskaya. Physical specifications of the Gun 5 RF cavity for X-FEL requirements, 2016

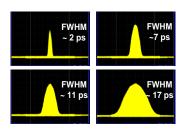

Photo cathode laser developments

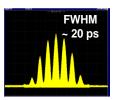
A key component for the success of PITZ or any photo injector


Max Born Institute, Berlin

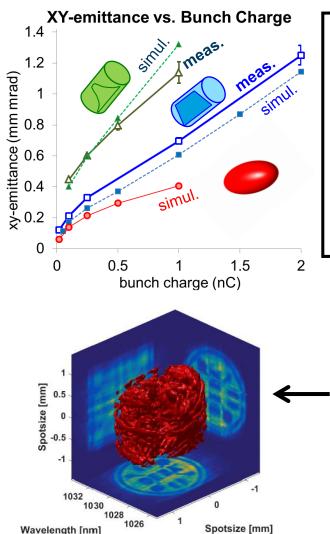

- development at MBI started 1998/99
- many intermediate steps realized + tested at PITZ
- MBI also provided other photo cathode laser systems for FLASH, European XFEL, ELBE, HZB

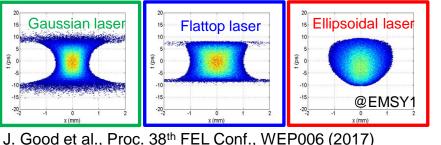
@PITZ: Yb:YAG laser with integrated optical sampling system




Multicrystal birefringent pulse shaper containing 13 crystals

Gaussian:


> very high flexibility


Towards 3D ellipsoidal electron bunches with IAP (Nizhny Novgorod)

Aiming for better transverse emittance, less halo, better LPS for bunch compresison

Comparison with simulated e beam shapes (500pC):

similarity in shape @PST.Scr1 First Measurement

Redesign to true double SLM setup based on commercial Pharos laser:

- Improved stability
- Improved shaping capabilities: independent masking in x and y, spectrograph feedback
- meas. laser pulse Conversion from IR to UV dilutes beam quality
 - → now: shape at green wavelength, experimental tests expected soon
- Cylindrical symmetry problem to be studied with volume Bragg grating

Pharos laser

Spectrograph

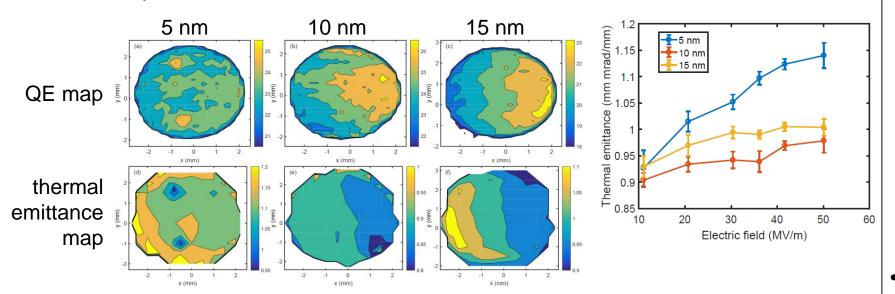
Latest development: NEPAL-P from DESY's FS-LA group

Modern development, high stability and flexibility, unifying photo cathode lasers at DESY

Parameter	NEPAL-F	NEPAL-XD/X	NEPAL-P
Burst structure	burst length: 1 ms two segments with 50-70 µs gap, each segment has different pulse parameters	burst length: 1 ms two segments with 50-70 µs gap, each segment has different pulse parameters	burst length: 1 ms
Intra-burst repetition rate	40 kHz, 50 kHz, 100 kHz, 125kHz, 200kHz, 250 kHz, 500 kHz, 1 MHz	100 kHz, 254 kHz, 564 kHz, 1.125 MHz, 2.25 MHz , 4.5 Mhz	100 kHz, 254 kHz, 564 kHz, 1.125 MHz, 2.25 MHz , 4.5 Mhz (other frequencies TBD)
Wavelength	257 nm	257 nm	257 nm
Pulse energy for long pulse	10 uJ	5 uJ	5 uJ
Longitudinal pulse shape, long pulse	Gaussian, up to 14 ps FWHM Option for 20 ps flat-top with 1ps from 10-90% rising edges	Gaussian, up to 14 ps FWHM Option for 20 ps flat-top with 1ps from 10-90% rising edges	Gaussian, up to 14 ps FWHM Option for 20 ps flat-top with 1ps from 10-90% rising edges
Pulse energy for short pulse	5 uJ		5 uJ
Longitudinal pulse shape, short pulse	Gaussian, < 1 ps FWHM		Gaussian, < 1 ps FWHM
Pulse-to-pulse energy stability	< 1% rms at cathode	< 1% rms at cathode	< 1% rms at cathode

Courtesy of Lutz Winkelmann

Installation at PITZ expected 1st half of 2023, will replace MBI system


Photo cathode developments

Up to now mainly UV cathodes (Cs2Te) were used at PITZ, INFN LASA Milano develops new green cathodes

Cs2Te:

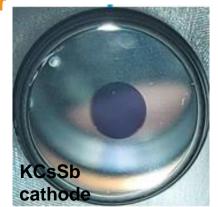
- Developments for DESY machines for were done by INFN LASA Milano
- Standard production for DESY's facilities (XFEL, FLASH, PITZ) was taken over by DESY Hamburg, special cathodes are still developed by LASA
- Example: Cs2Te cathodes with different Te thicknesses:

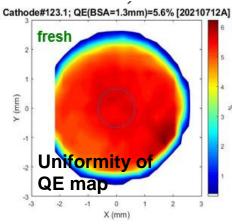
→ Anti-correlation between QE and thermal emittance observed

→ PRAB **25**, 053401 (2022)

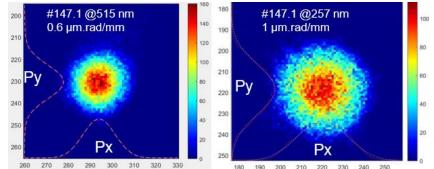
Green cathodes:

- Emission at green PC laser wavelength
- Aim for
 - Lower thermal emittance
 - Simplified photo cathode laser **system** → omitting conversion to UV leads to
 - Lower primary laser energy required
 - **Less degradation of laser** pulse shaping
 - Low dark current, high life time + robustness to be maintained
- New developments at LASA ongoing ...


Green photocathodes for high-brightness RF photoinjectors

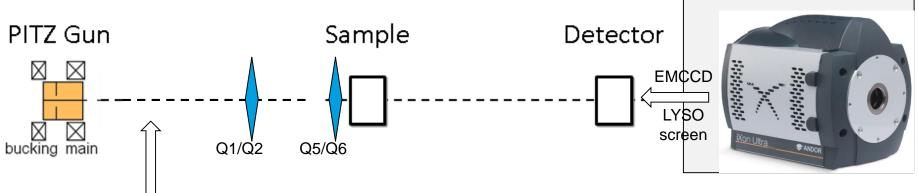

KCsSb Photocathodes → lower therm. emittance, simplified PC laser

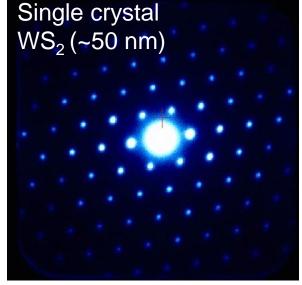
- INFN LASA successfully produced the first batch of 3 green cathodes in "new production" system" with sequential deposition and varying thickness (1 thick and 2 thin cathodes).
 - 3-7 % Q.E @514 nm is recorded after production for thick and thin cathodes
- Test results in PITZ RF gun:
 - Above 30-40 MV/m, much more vacuum events than Cs₂Te conditioning → degrades QE significantly
 - QE drops from 3-6% to below 1% in 2 days
 - Thermal emittance
 - Green 2.4eV @19 MV/m, ~0.6 mm.mrad/mm
 - > **UV** 4.8eV @19 MV/m, ~1 mm.mrad/mm
 - Response time
 - One good dataset for #147.1, preliminary analysis shows below ~100 fs, much shorter than Cs2Te (~200 fs).
 - Relatively **high dark current** is observed compared to Cs₂Te photocathode.


Future plans:


- Cathode degradation studies at different setup temperatures, gases etc.
- Improve and further optimize the cathode recipe.
- Develop a reproducible growth procedure for NaKSb(Cs) photocathode.
- Surface characterization study

2D distribution of photoemission transverse momentum:

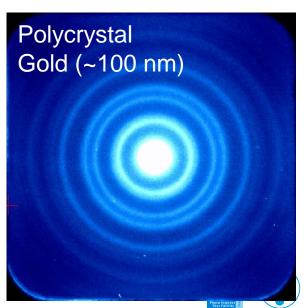

II) Other high brightness beam applications:


- Tests towards UED studies
- R&D on beam driven plasma acceleration
 - a) experimentally proving self-modulation instability
 - b) high transformer ratio measurements
- Generating bunch microstructure via dielectric lined waveguides
- THz SASE FEL
- FLASH radiation therapy and radiation biology

First static electron diffraction tests at PITZ in 2017

Collaboration between PITZ, Max-Born-Institute (MBI) and Fritz-Haber-Institute (FHI)

■ PITZ bunch train (up to ~10⁴ pulses/sec) reduces signal accumulation time for diffraction patterns for better signal to noise ratio.


Lw:ttopoo	measurement
Emiliance	meachrement
	HICASAICHICH

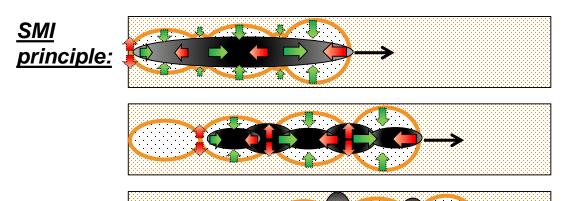
E	~320 fC, ~100 nm.rad	×10
0.3		- 18
0.2	The state of the s	160
0.1		120
Y. (mrad)	The state of the s	10
-0.1		80
E		60
-0.2	A second black	20
-0.3	-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -V,[mm]	0

e ⁻ beam at sample	1st Test	Unit
Energy	~4	MeV
Electron per pulse	~2x10 ⁶	e ⁻ /pulse
Bunch FWHM length	~2*	ps
Normalized emittance	~100	nm.rad
RMS beam size at sample	~200	μm
Transverse coherence length	~1.9**	nm

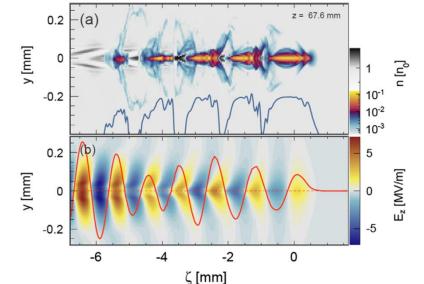
Summary of 1st test

*Buncher off. **No beam aperture yet.

R&D on beam driven plasma acceleration -> Part a)


Self-modulation instability (SMI), background & scope of experiments at PITZ

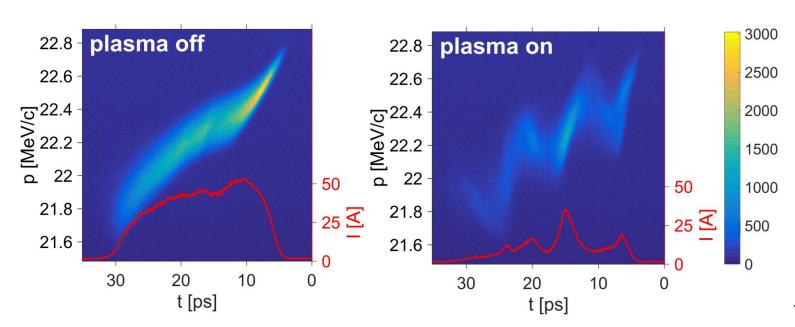
Instability physics


- Transverse modulation of long bunches ($L_{bunch} >> \lambda_{plasma}$)
- Initiated by inhomogeneities in focusing forces
- Providing proton driver trains for PWFA
 (AWAKE@CERN: Convert proton beam energy to accelerate electron beam in single stage)

Self-modulation at PITZ

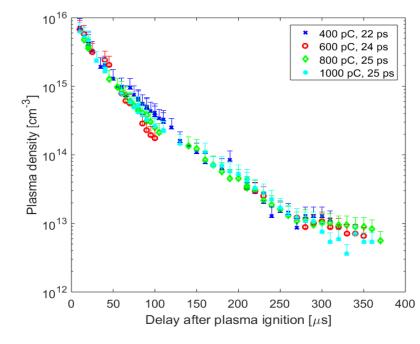
- Proof-of-principle experiments
- Modulate flat-top electron bunches
- Investigate dynamics of instability, test theory models

Simulations



Highlight: Self-Modulation of a Long Electron Bunch

@PITZ: first unambiguous experimental signature was revealed by RF deflector in autumn 2016


Demonstration at PITZ: characterization of self-modulation with electron beam

Longitudinal phase space $(n_p \sim 4x10^{14} \text{ cm}^{-3})$

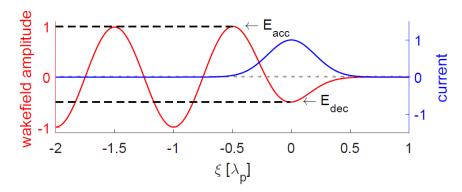
M. Gross et al., PRL 120, 144802 (2018)

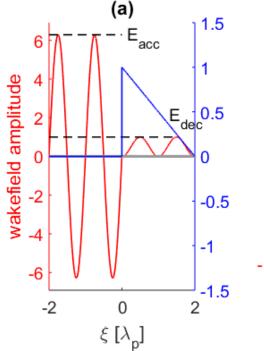
Utilizing the Self-Modulation Instability (SMI) as an online diagnostics tool

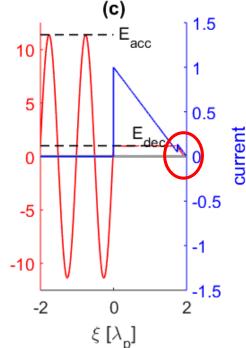
- ✓ Results fit well to spectroscopic measurements.
- Measurements extended to lower densities

G Loisch et al., PPCF 61 045012 (2019)

R&D on beam driven plasma acceleration → Part b)

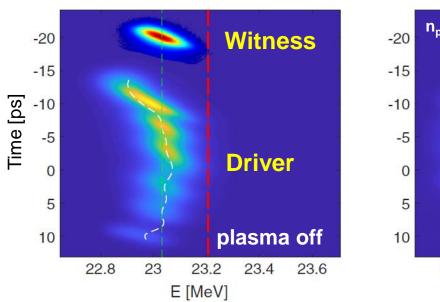

High Transformer Ratio (HTR) wakefields increase ratio of acceleration to deceleration

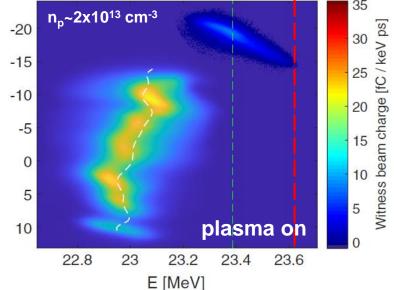

- Plasma wakefield ~ transformer → Energy-transfer from driver to witness
- Fundamental theorem of beamloading: TR = E_{acc}/E_{dec} <2
 <p>(symmetrical driver, linear theory)
- High TR enables high energy gain or high efficiency
- Asymmetrical bunch shapes proposed


→ TR ≤
$$2\pi$$
 L_{driver}/ λ _{plasma}

HTR in PWFA

- \rightarrow $\lambda_{plasma} \leq mm \rightarrow ps$ -scale bunch shaping
- ➤ Driver length = several periods of wake → instability
 - \rightarrow operation in (quasi-) nonlinear regime: $n_{bunch} > n_{plasma}$




Highlights: High Transformer Ratio in Plasma

First detection of increased transformer ratio with shaped driver in plasma

Demonstration at PITZ: Time resolved energy measurement (slice energy) by using ~double triangular drive bunch

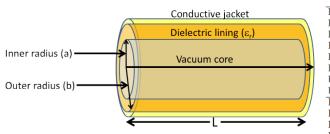
TR = $4.6^{+2.2}_{-0.7}$ **Experimental result:**

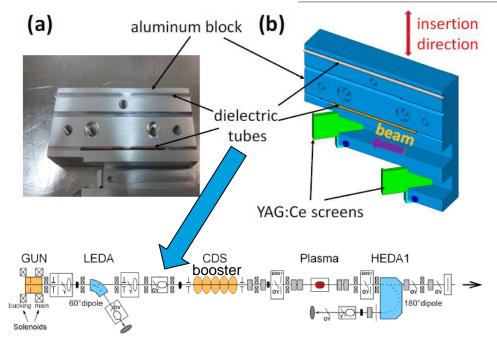
→ G. Loisch et al., Phys. Rev. Lett. 121, 064801 (2018)

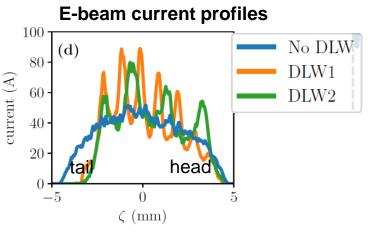
Measured electron bunch profile [ww/] × 0.5 Bunch time [/ps] Bunch 25 Bunch time [/ps]

→ G. Loisch et al., "Photocathode laser based bunch shaping for high transformer ratio plasma wakefield acceleration", NIM A, 909, pp. 107-110 (2018)

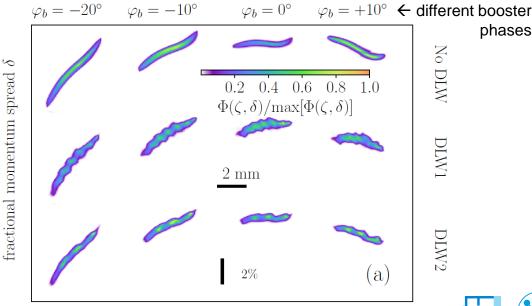
driver


witness


Bunch Microstructure Generation with DLWs at PITZ

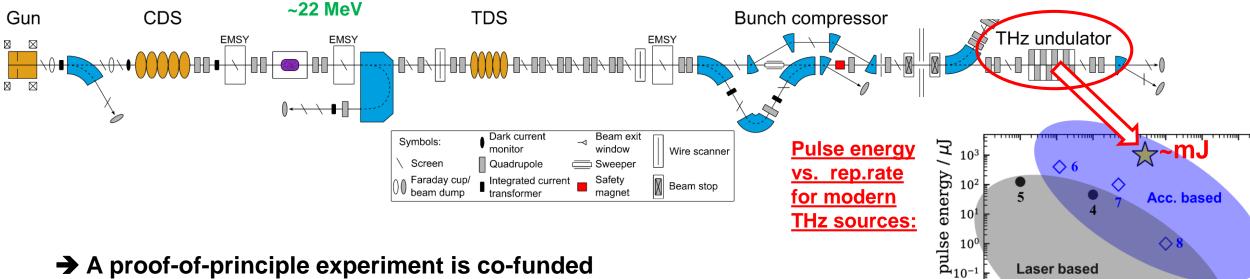

Pls: F. Lemery (CFEL, DESY) and P. Piot (APC FNAL) et al., Phys. Rev. Lett. 122, 044801 (2019)

Using Dielectric Lined Waveguides - DLW



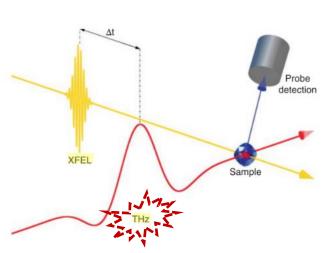
parameter	symbol	$_{ m nominal}$	range	unit
laser launch phase	ϕ_l	0	_	deg
laser spot radius	r_l	2	_	$_{ m mm}$
laser pulse duration	L_t	13	[10, 20]	$_{\mathrm{ps}}$
RF gun peak field	E_0	60	[45, 60]	MV/m
linac phase	φ_b	0	[-20, +10]	deg
linac voltage	V_b	14	[10, 18]	MV
bunch charge	Q	1.1	[0.020, 2]	nC
beam momentum	$\langle p \rangle$	21.8	[16, 22]	MeV/c
DLW permittivity	ε_r	4.41	_	_
DLW1 inner radius	a_1	450 ± 50	_	$\mu\mathrm{m}$
DLW1 outer radius	b_1	550 ± 50	_	$\mu\mathrm{m}$
DLW1 length	l_1	50.0 ± 0.1	_	$_{\mathrm{mm}}$
DLW2 inner radius	a_2	750 ± 50	_	$\mu\mathrm{m}$
DLW2 outer radius	b_2	900 ± 50	_	$\mu\mathrm{m}$
DLW2 length	l_2	80.0 ± 0.1	_	$_{ m mm}$

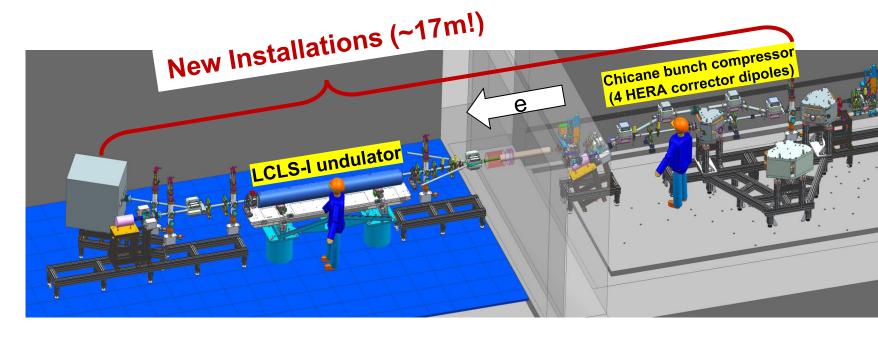
Measured Longitudinal Phase Spaces



THz SASE FEL Developments at PITZ

Accelerator-based, high power (peak + av.) THz source for pump-probe experiments at European XFEL


→ PITZ-like accelerator allows mJ level THz at E-XFEL repetition rate


→ A proof-of-principle experiment is co-funded by the E-XFEL Management Board since 2019.

1,3-5: Optical rectification[1]
2: photoconductive antenna [1]
6: CTR (LCLS/FACET) [2]
7: UR (FLASH) [3]
8: UR (TELBE) [4]
1]B. Green, et al, Sci. Rep.V. 6, Article number: 22256 (2016)
2|B. Gensch, Proceedings of FEL 2013, 474 (2013)
3|https://flash.desy.de/
4|https://www.hzdr.de/db/Cms?pOid=34100&pNid=2609&pLang=en

THz@PITZ: Application and extended PITZ beamline

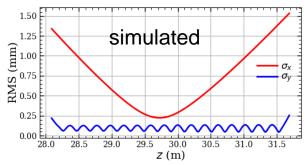
Applications:

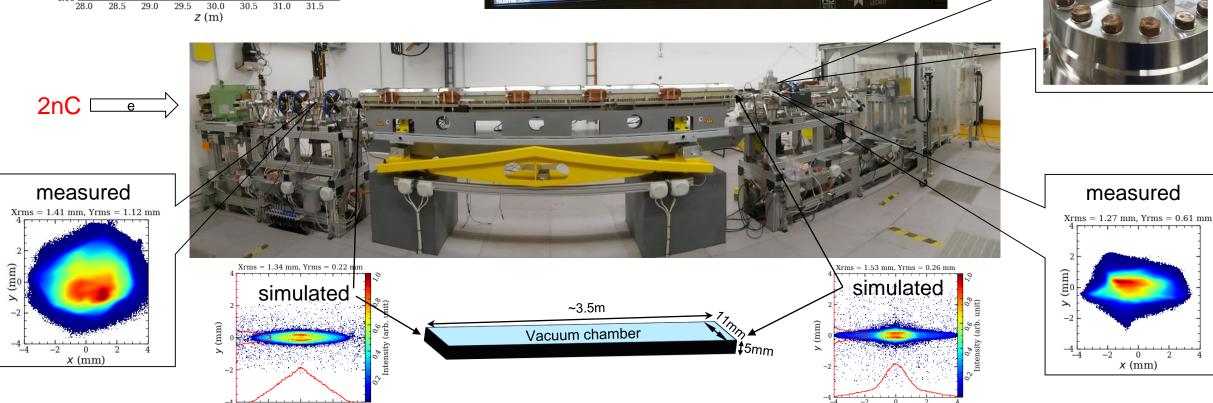
- Studies of protein dynamical transitions and tertiary native proteins with structural motions
- Characterization of ions and molecules where solvation process plays a relevant role in the modification of their structure and properties.
- Condensed matter physics: the study of non-linear effects aiming to the control the state of material which could lead to new applications.
- Phase change of materials.
- Highly correlated materials (magnetoresistance, ferroelectrocity, superconductivity, insulator-to-metal transitions, etc).

LCLS-I undulator from SLAC

Vacuum chamber:

5 x 11 mm 3.4 m long


challenge to transport ≤4 nC with 17 MeV



THz SASE FEL at PITZ

Electron beam matching for lasing

x (mm)

Pyroelectric detector

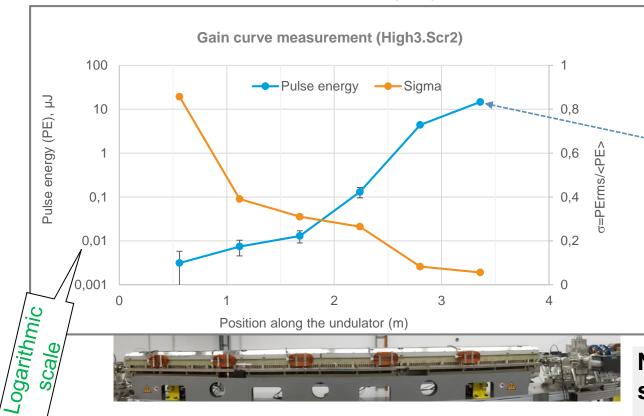
THz SASE FEL at PITZ: First Characterization

FEL Gain Curves

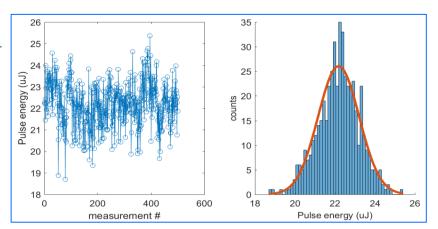
Operation / THz generation:

- First lasing at ~100µm → high gain THz SASE FEL at PITZ!
- Gain curves at 1, 2 and 3nC
- Currently >20µJ (further optimization ongoing)

FIRST LASING OF THE THZ SASE FEL AT PITZ*


M. Krasilnikov[†], Z. Aboulbanine, G. Adhikari, N. Aftab, P. Boonpornprasert, R. General, G. Georgiev, J. Good, M. Gross, L. Heuchling, A. Hoffmann, M. Homann, L. Jachmann, D. Kalantaryan, W. Köhler, G. Koss, X.-K. Li, A. Lueangaramwong, S. Maschmann, D. Melkumyan, F. Müller, R. Netzel, R. Niemczyk, A. Oppelt, B. Petrosyan, S. Philipp, M. Pohl, H. Qian, A. Sandmann-Lemm, M. Schade, E. Schmal, J. Schultze, F. Stephan, G. Vashchenko, T. Weilbach, DESY, Zeuthen, Germany

B. Krause, E. Schneidmiller, M. Tischer, P. Vagin, M. Yurkov, DESY, Hamburg, Germany A. Brachmann, N. Holtkamp, H.-D. Nuhn, SLAC, Menlo Park, USA


Abstract

brightness electron source for the European XFEL, properies of the photo injector are fully compatible with the

one, especially both injectors maintain the

Recently: Saturation observed for 2nC: <PE>~22µJ

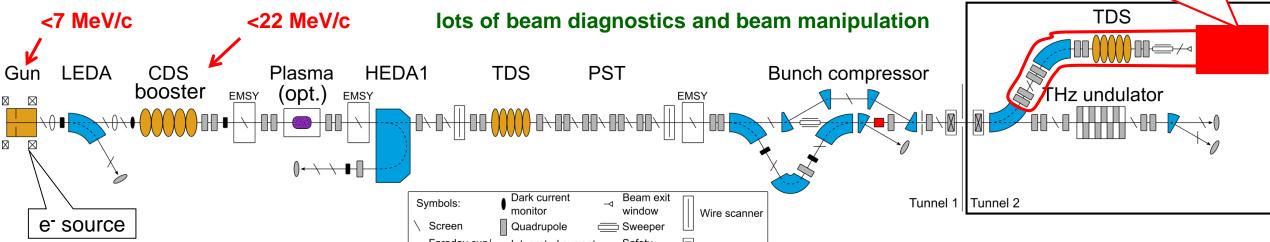
Update 10.10.2022:

~50µJ w/o BPF,

>15µJ with BPF@3THz

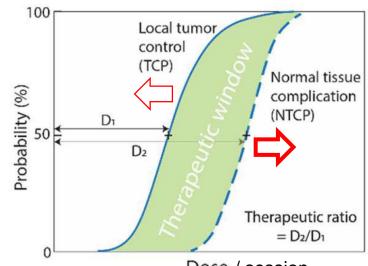
Next steps:

- Detailed tuning of high-charge beam transport/matching
- Setup full THz and e-beam diagnostics
- Other dedicated studies (BC, seeded THz FEL)



New activity: → FLASHlab@PITZ

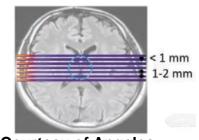
R&D on electron FLASH radiation therapy against cancer


free space for FLASHlate@PITZ area: $> 6 \times 2 \times 3 \text{ m}^3 (1 \times 4 \times 4 \times 4)$

Beam stop

FLASH effect is an experimentally proven observation, underlying mechanism still under study

- Medical/biological definition of the FLASH effect (in vivo):
 - Sparing of healthy tissue by radiation with short, high intensity pulses (e⁻, p, x-ray) while having at least the same tumor control as with conventional radiation
 - increasing therapeutic window, reduce treatment time, treating radiation resistant cancer, confine dose to moving cancer


Dose / session

Unique beam properties at PITZ

allow extremely flexible treatment parameters and dose distribution (in space + time)

- Possibility of **bunch trains** with **up to 1 ms** length:
 - Bunch repetition rate within train 0.1 1 MHz (opt. 4.5 MHz)
 - Trains can be repeated with up to 10 Hz
 - → 1 1000 bunches in 1 ms (opt. up to 4500)
 - → 1 10 000 bunches in 1 s (opt. up to 45 000)
 - Depending on bunch charge (<fC 5nC) indiv. bunches have
 - a) length of ~0.1 60 ps (bunch compressor)
 - b) spot size down to ~100µm
- **Kicker** can be used to distribute the bunches of the bunch train (1ms) over treatment area
 - "painting" tumor with micro beams within 1 ms
 - → ~no organ motion
 - Kicker system is already existing
 - → possibility of micro beam radiation therapy (MBRT)

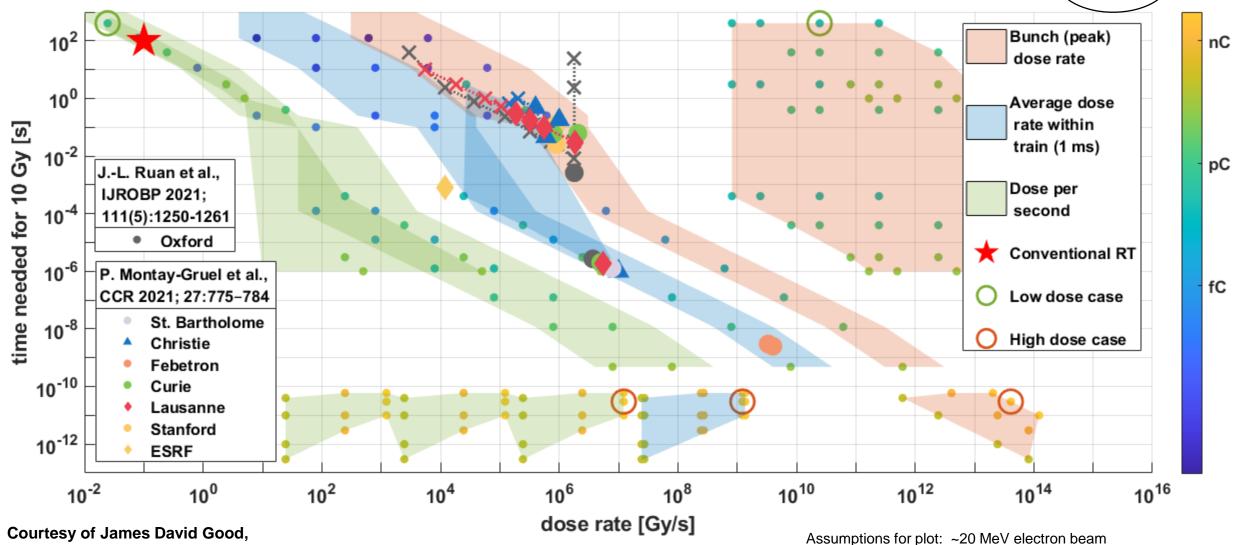
Courtesy of Angeles Faus-Golfe for table: ~20 MeV e-beam in water with 1mm³ irradiation volume.

Assumptions

<u>≤</u>	1 ms	t	0.4 60 mg
	0.1 – 1 s		0.1 – 60 ps
		$\Delta t = 0.2 - 1 - 10 \mu s$	·)

Single bunch:

~9 Gy (cm3)


Two examples:

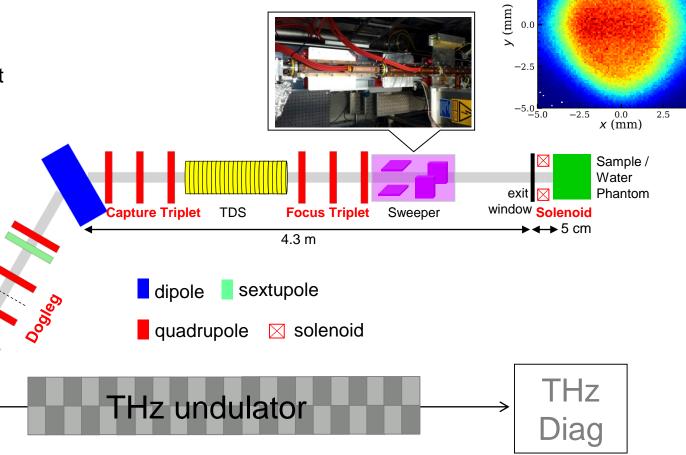
_		
Options @PITZ:	low dose case	high do case
Bunch charge [pC]	0.1	5 000
Single bunch OR train	single bunch	1ms train (1MHz)
RF pulse rep. rate	1Hz	10Hz
Bunch length [ps]	<1	~30
Dose Dose rate <u>per</u> <u>bunch</u> [Gy Gy/s]	0.02 >2E+10	1000 4E+13
Dose Dose rate <u>per</u> <u>train(ms)</u> [Gy Gy/s]	0.02 20	1E+6 1E+9
Dose per second [Gy/s]	0.02	1E+7

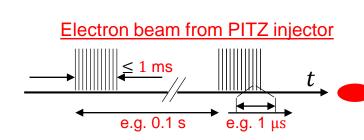
Parameter space available at PITZ

≤1 ms e.g. 0.1 s $\Delta t = e.g. 1 \mu s$

In comparison with the state-of-the-art up to now

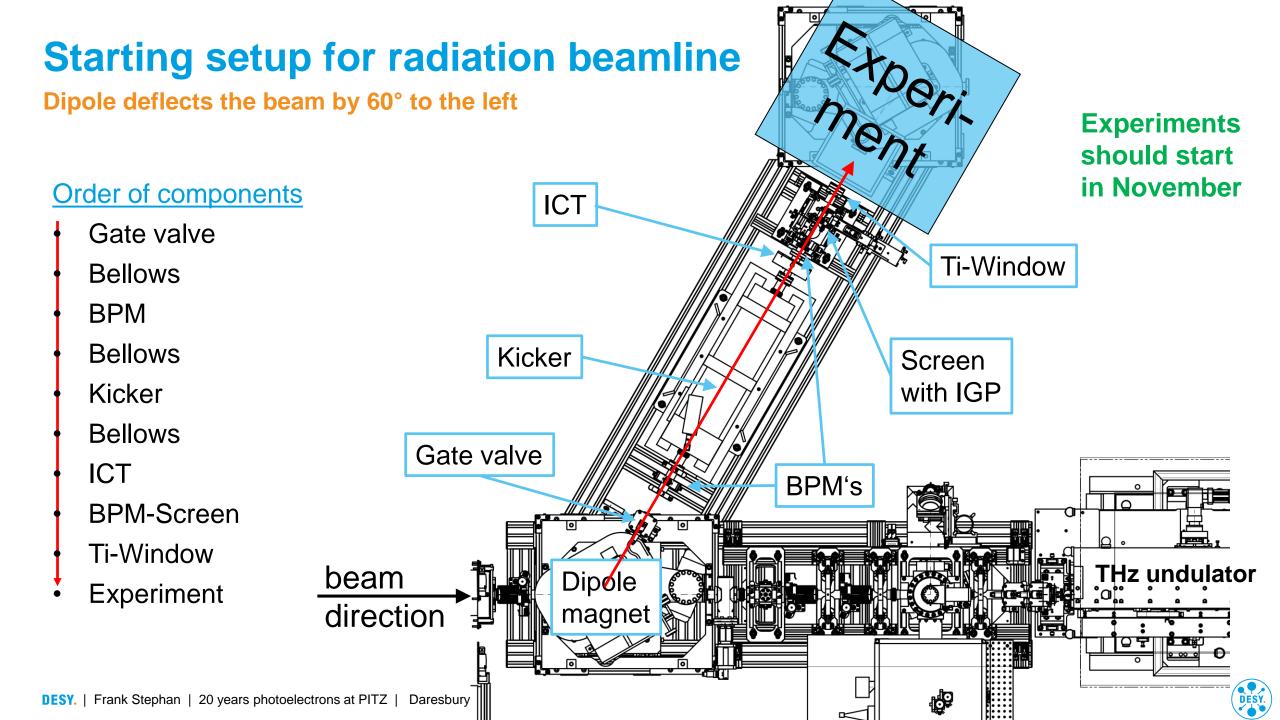
in water with 1mm³ irradiation volume. Page 44


Marie-Catherine Vozenin, Jean-Francois Germond


Preparations for FLASHlab@PITZ are ongoing

Beamline design will allow very flexible treatment parameters

Design of FLASH-RT beamline


- fully controlled high charge beam transport
- sweep bunch train in 1 ms


1 nC, 2 cm after window

2.5

The project FLASHlab@PITZ schematically:

Cooperation with DKFZ and HZDR in preparation. Further groups

VHEE RT

rad. biology

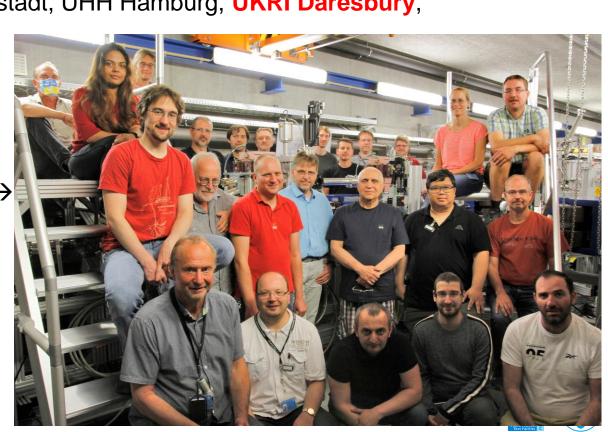
Work strongly supported by **DESY** directorate

Thank you very much to everybody ...

... who was/is participating in the success of PITZ:

to the 25 national and international partners

[AANL(YERPHI) + CANDLE Yerevan, Charité Berlin, CHUV Lausanne, HZB Berlin, HZDR Rossendorf, ICR London, IAP RAS Nizhny Novgorod, IJCLab Orsay, INFN Frascati & Uni Roma, INFN LASA Milano, INRNE Sofia, INR Moscow, JINR Dubna, LBNL Berkeley, MBI Berlin, PTB Braunschweig, SLAC Stanford, ThEPCenter Chiang Mai, TH Wildau, TUD-TEMF Darmstadt, UHH Hamburg, UKRI Daresbury, UniBW München]


to the many colleagues from different groups at DESY,
 Hamburg site

to the many colleagues at DESY, Zeuthen site,
 only some of them shown here →

Thank you for your attention!

Intrest in collaboration:

→ frank.stephan@desy.de

