Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

Nairit Sur

CPPM - CNRS/IN2P3

on behalf of the ATLAS Liquid Argon Calorimeter Group

Towards HL-LHC

The high luminosity phase of the LHC (**HL-LHC**) will produce **140-200** simultaneous p-p interactions (pile-up), compared to the current value of around **40**

Energy deposits **continuously** sampled and digitized at 40 MHz : ⇒ requires peak finder/trigger (to select the correct BCIDs) **Real-time** energies for triggers : ⇒ requires compact algorithms on high-end FPGAs

LAr Upgrade

New off-detector electronics on the backend board:

- LAr Signal Processor (LASP)
 - Two FPGAs (Intel Agilex)
 - ~Tb/s(~700 channels)
 - ~300 boards

Upgrade of readout electronic chain for AI algorithms

• One FPGA should process **384 channels**

 About 125 ns allocated latency for energy computation

Jul 10 - Jul 23, 2023

 $E_{\sf reconstructed}$

Two neural network types are tested:

Convolutional Neural Networks (CNN) - Developed by the TU Dresden group

and

Recurrent Neural Networks (RNN) - Developed by the CPPM group

CNN step 1: Pulse tagging

CNN for pulse tagging:

Trained to detect energy deposits 3 σ above noise (240 MeV) using pulse samples for 8 bunch crossings

CNN step 2: Energy inference

Both retrained together

CNN for energy reconstruction:

Energy reconstruction layers are added to the tagging layers and retrained together

Recurrent Neural Networks

Designed for handling sequential data, RNNs consist of internal neural networks that process new input combined with the past processed state

Two RNN internal architectures explored:

- Optimised for smaller number of parameters
- Long Short-Term Memory (LSTM) 10 internal dimensions
- Vanilla-RNN 8 internal dimensions

Higher complexity, bigger size on hardware

RNN applications: two methods

Dense

RNN

ADC(12)

RNN

ADC(8)

RNN

ADC(9

Single Cell Method:

Long range correction, full signal is processed in a stream

X Significant amount of complexity needed to process data in time (LSTM only)

Sliding window Method (5 BC):

Robust against long-lived effects due to unforeseen behaviour of the detector, simpler training

X Short range correction only (1 BC in the past)

Nairit Sur, XII ICNFP, Crete

Performance : HL-LHC condition with pileup of 140

Comparisons on single LAr cell simulations (*AREUS* software)

- Legacy algorithm exhibits big distribution tails especially at low gap
- The tails are reduced significantly with all the new NN methods

NN Performance : HL-LHC condition with pileup of 140

- Overall better energy scale and resolution for all NNs with respect to OF_MAX
 - Lower tails as seen from the 98% median range
- All NNs optimized to reduce as much as possible the required computing resources
 - While keeping good performance
- LSTM perform best but have a larger number of parameters
 - Harder to fit in the FPGAs

Comput Softw Big Sci 5, 19 (2021)

Algorithm	LSTM (single)	LSTM (sliding)	Vanilla (sliding)	CNN (3-conv)	CNN (4-conv)	Optimal filtering	
Number of parameters	491	491	89	94	88	5	
MAC units	480	2360	368	87	78	5	

Jul 10 - Jul 23, 2023

Nairit Sur, XII ICNFP, Crete

11

Implementation on FPGAs

- Set of weights optimised by training
- architecture(layers, dimensions, ...)
- Mathematical operations

- **ALM**: adaptive logic modules
- **DSP**: digital signal processors
- Fixed-point arithmetic, LUT for non-linear functions

$$\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{3} \\ y_{4} \end{array} = A \left(\begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \end{pmatrix} \times \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} + \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \end{pmatrix} \right)$$

- Activation function for non-linear element operations

CNN Firmware Implementation

- CNN implemented in VHDL with full configurability -
 - Configurable layer building blocks: I/O, activation functions
 - Configurable component connections: **Kernel sizes, filters per layer, dilation**
- Model architecture parameters automatically extracted from Keras output
- Designed to support pipelining and time-division multiplexing:
 - Runs at 12 times the ADC frequency and processes 12 detector cells cyclically
- Calculations can be done in 18-bit fixed point numbers

RNN Firmware Implementation: HLS

- RNN initially implemented in Intel HLS which adds an additional level of abstraction
 - Advantages: fast and efficient optimisation of parameters and implementation
- Optimisation of arithmetic operations:
 - Different quantisation schemes tested for optimal fixed point operation performance
 - truncation(TRN) vs. rounding (RND) of internal type(I), I/O
 type(D), and weight type(W) data categories
- Disadvantages:
 - Cannot achieve target frequency and resource utilisation constraints when several instances of NNs are placed on the same FPGA
 - During compilation, each instance gets different placement shape, which, moreover, gets randomised between compilations → complicates optimisation of timing-critical paths needed to reach higher frequency and multiplexing

Jul 10 - Jul 23, 2023

Nairit Sur, XII ICNFP, Crete

HLS placement

RNN Firmware Implementation: VHDL

- Implementation in VHDL enables finer optimisations which are not tunable in HLS
- Reuse of common computations:
 - Common computations in cells differing only in time are propagated 0 between each other at the proper time instead of recalculation, unnecessary calculation for certain cells removed
 - Reduction of DSP usage by 10%, ALM usage by 21% 0
- Optimised placements:
 - Placement of 5 network cells designed to minimise distance between them
 - Placement constraints force all NN instances to have the same shape 0
- Incremental compilation of multi-partitioned firmware design:
 - Preserve partitions (1 NN instance each) that do not exhibit timing 0 violations and recompile the rest until the target frequency is reached for the whole design \rightarrow reached **560 MHz** with **28 NN** instances within 4 compilations

Jul 10 - Jul 23, 2023

Nairit Sur, XII ICNFP, Crete

(2023)

Estimation of FPGA Resource Usage

- Both CNN and RNN implementations in VHDL satisfy ATLAS requirements:
 - Trigger latency **≈ 150 ns**
 - Process 384 channels per FPGA with multiplexing
- Estimated resource usage based on Intel Quartus reports:

FPGA	Network	Multiplexing	Channels	F _{max} [MHz]	ALMs	DSPs
Stratix-10	RNN (HLS)	10	370	393	90%	100%
	RNN (VHDL)	14	392	561	18%	66%
	2-Conv CNN	12	396	415	8%	28%
	4-Conv CNN	12	396	481	18%	27%
Agilex	2-Conv CNN	12	396	539	4%	13%
	4-Conv CNN	12	396	549	9%	12%

Jul 10 - Jul 23, 2023

Summary

- CNN and RNN networks outperform the optimal filtering algorithm for the energy reconstruction in the ATLAS LAr Calorimeter, particularly in the region with overlap between multiple pulses
- Next step is to quantify the effect on object (electrons, photons) reconstruction and physics performance
- All networks are designed to reduce to a maximum the resource usage while keeping the performance
- CNN and Vanilla RNN are serious candidates that can fit the stringent requirements on the LASP firmware
- Network optimisations in VHDL allow reaching the requirements in terms of resource usage and latency
 - Testing on hardware (Stratix10 DevKits) started and shows good results
 - Need to check timing violations with all other components of the LASP firmware
- Quantisation-aware training has proved to be effective in significantly reducing the required bit width for number representation on the FPGA, thereby minimising the resource usage

Firmware vs. Software

- Energy computed with Quartus simulation and verified on target
- *O***(1%) resolution** due to firmware approximation, viz. LUT for activation functions, Fixed point arithmetic

Quantisation mode optimisation for RNN

- Comparison of resource usage in terms of DSPs, arithmetic look-up tables (ALUT), flip-flops (FF), and random access memory (RAM) for different quantisation modes available in Intel HLS
- comparison of the transverse energy computed in firmware and the one computed in software, with a full floating point implementation, for the different quantisation modes

