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The High Luminosity LHC

HL-LHC

| Run 2 | | Run 3
136 Tev TR 13.6 - 14 ToV
13 TeV energy
Diodes Consolidation
splice consolidation cryolimit LIU Installation =
7 TeV ﬂ button collimators Intya_ractlon ) inner triplet HL. LH(I:
L R2E project regions Civil Eng. P1-P5 pilot beam radiation limit installation

IO N T T T R T T R o Lo e T o
5 to 7.5 x nominal Lumi
ATLAS - CMS
experiment upgrade phase 1 ATLAS - CMS
i

R 2 x nominal Lumi ALICE - LHCb 2 x nominal Lumi HL-upgrade
—_— ;
upgrade o

nominal Lumi

75% nominal Lumi I

A integrated 3000 fb™
m m 450 fb luminosity IR {7

HL-LHC TECHNICAL EQUIPMENT:

DESIGN STUDY = o - CONSTRUCTION INSTALLATION & COMM. PHYSICS

 LHC and its experiments have produced many results (see talks in this and future sessions)
» LHC accelerator periodically upgraded to keep exploring the energy frontier...
* The “HL-LHC” period will start in ~2029 with ~5 times the nominal luminosity

» This will increase the pile up from current u~50 to =200

* Need to upgrade ATLAS experiment to deal with more radiation damage, more “messy”
events...
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simulation
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ATLAS Upgrade Overview

Trigger and DAQ Upgrade

* Single level Trigger with 1IMHz
output (x 10 current)

Improved system with faster
FPGAs

Calorimeter Electronics

* On-detector electronics
upgrades of LAr and Tile
Calorimeters

* Provide 40 MHz readout for
triggering

Muon Detector

* Upgrade of inner barrel chambers

* Improve trigger efficiency and
momentum resolution, and reduced

fakes
High Granularity Timing Detector
« Precision track timing (30 ps) New Inner Tracker (ITk) .
« Improve pile-up rejection in the * All silicon with 9 layers up to |n|=4 S;-'e talmfc buc: on
forward region * Less material finer segmentation phase- Lpgraces

* Improve vertexing, tracking, b-tagging
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Trigger and DAQ Upgrade

Trigger:

e Trigger data input at 40 MHz

e Level-0: Rate 1 MHz, latency 10 ps

« Software based Event Filter: Rate 10 kHz

* Exploits full detector granularity and extended
tracking range, improves muon trigger
efficiency

* For the Event Filter use COTS hardware,
either pure software solution, or GPU or FPGA
card acceleration (under evaluation).

DAQ:
* Unified backend electronics based on custom

PCle FPGA cards (FELIX) instead of VME-
based readout boards
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Calorimeter Electronics

Continuous readout at 40 MHz: See A. Gavriliuk talk in this

New on-detector and off-detector electronics conference

Liquid Argon Calorimeter (LAY)

* Total bandwidth of 345 Thps

* New high precision front-end electronics with a
16-bit dynamic range and 0.1% linearity

* ATCA boards for waveform feature extraction (E,
time)
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Average PMT relative response

* New ASICS (ADC, calibration DAC & pulser) 0'95 H L
Tile Calorimeter: o M
- old PMT
* Replacement of the most exposed PMTs S A N S I I
(abOUt 10%) Integrated anode charge [C]

* Replacement of passive PMT HV-dividers
by active dividers for better response
Stabl I Ity. Adder Base

- On-detector electronics at advanced stage, o
production ongoing

* Phase-2 demonstrator installed (July 2019)
in ATLAS and is taking data during Run 3
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Muon System

Upgrade readout/trigger electronics

 all hit data is sent off detector to trigger
logic boards with LO trigger rate of 1 MHz

Addition layers of sMDT, RPC, and TGC

* Improve coverage, trigger uniformity &
momentum resolution, reduce fake rates

Current status

* sMDT: chambers in production, electronics
pre-production

 RPC: FE prototypes submitted, prototype
chamber nearly complete

* TGC: Triplet prototype completed, FE ASIC
production complete
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Inner Tracker (ITk)

r [mm]

Complete replacement of the current Inner
Detector (Pixel, SCT, TRT) with Silicon-only
system

Pixel (Inner system, outer barrel, outer

endcap, 13 m?) and Strip detector (barrel,

endcaps, 168 m?)

(inner Pixel)
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Eta coverage increases from 2.5 to 4
Reduced material and finer segmentation
At least 9 silicon hits per track

Radiation tolerant up to 1E16 neq/cm?
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ITk Pixel Detector

General features:

* Organized as three systems (inner, outer,
outer endcaps)

* Five barrel-layers

* More than 5,000 M pixels, ~10 k modules

* Inner system replaceable (radiation damage)
» Serial powering

e Carbon fiber supports, thermal demonstrators
Sensors:

* Pixel sizes 25 x 100 ym? (innermost barrel)
and 50 x 50 pm? (everywhere else)

* 3D sensors in innermost barrel/disks and
planar sensors in the other layers

e 3 or 4 FE chips/module

Production status:

* All sensors are in pre-production

* Hybridization pre-production modules started

* ITkPixV2 readout chip has been submitted

S. Grinstein
ICNFP 2023




O HCCstar B rowerboard

ITk Strip Detector

General features:

* Four-layer barrel and two six-disk
endcaps

- ATLAS ITk Strips
[ Irradiated Short-Strip module 2021

* Angular coverage of |n| < 2.7

° 18 k mOdU|eS :_genzor?ggtﬁniér;fi. 1.05-10%° 1 MeV neg/cm? 1

Sensors/ASICs: ool *®en i
S ; A :

e Strip width ~75 pm 09— N o

« ~60 M channels o8 %
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» ABCStar, HCCStar and AMAC chips | ﬁ
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* Mechanics in production
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High Granularity Timing Detector

* HGTD designed to improve ATLAS
performance in the forward region in
view of increased pile up in the HL-
LHC

* Also provides luminosity information

Target time resolution:
30-50 pslitrack up to 4000/fb

* Located between barrel and end-
cap calorimeters (|z|=3.5 m)
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High Granularity Timing Detector

Sensor:
e 15x15 array with pad size: 1.3 x 1.3 mm?

* Single-event burnout (SEB) was observed
on LGAD sensors during beam tests

* Mitigated by carbon-infused sensors (can
be operated at decreased high voltage)

ATLAS HGTD Preliminary Test Beam
T

ATLAS HGTD Preliminary Test Beam

ASIC:

« First full size ALTIROC2 prototype very 8 R g e
successful, not fully rad hard " o0 = 25610

* ALTIROCS wafers recently received ** '\'"“‘*-‘_‘\, | .

Modules: a1 I e

* Modules (2 ALTIROCs bump bonded to 2 e wmw m e w0 w0

Bias Voltage[V]
LGAD sensors) have been demonstrated HGTDPublicPlots e repE—
to work y

B
System tests: m {;

* Thermal demonstrator
* Electrical demonstrator on-going

See S. Ridouani more detailed talk this afternoon
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Summary and Conclusions

» ATLAS detector currently undergoing mayor upgrade to optimize the
experiment for HL-LHC data taking period

* Objective is to maintain or improve physics performance in view of
more demanding environment

* Trigger system upgrade: 100 kHz to 1 MHz

* Most detector electronics (DAQ and trigger systems) will be upgraded to
cope with the luminosity increased and increased trigger/readout rate

* Muon detector upgrade (sMDT, TGC, RPC) to improve coverage and
triggering

* An all-new silicon tracker (ITk) with 5 layer pixel and 4 layer strips which
Improves tracking up to |n|<4

* The High Granularity Timing Detector (HGTD) based on LGADs will help
to reduce pile-up effect in the forward region with timing measurements

Many interesting results in this conference and
looking forward to physics with the high luminosity LHC!
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Impact of HGTD

Example, two “straight forward”
Improvements with HGTD

Pile up rejection

* PU jets identified by looking at the

tracks associated to a jet

« HGTD can help identifying PU

tracks, specially at large n
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Electron isolation efficiency

e PU tracks can cause electrons to
fail isolation requirements

« HGTD can help maintain high
efficiency, specially at high pile up
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HGTD Radiation Hardness

* The strategy to cope with the high radiation environment is to segment
the detector into replaceable rings
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* Inner ring (12-23 cm) replaced every 1000/fb Maximum fluence:

* Middle ring (23-47 cm) replaced every 2000/fb 5 5E151MeV n Jem?
* Outer ring (47-64 cm) never replaced and 2MGy at the end

of HL-LHC (4000/fb)
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