

Latest results from the CUORE experiment

Mattia Beretta on behalf of the CUORE collaboration

University of California Berkeley

12/07/2023 - ICNFP 2023

Physics focus: double beta decay

Second order weak process: $(A,Z) \rightarrow (A,Z+2)$

<u>2νββ:</u>

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$

Predicted and measured

 $T^{2v}_{1/2}$: $10^{19} - 10^{22} y$

<u>Ονββ:</u>

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Prohibited in SM ($\Delta L = 2$) Limits: $T^{2v}_{1/2} > 10^{24} - 10^{26}$ y

Main goal for the CUORE experiment

Physics focus: double beta decay

Second order weak process: $(A,Z) \rightarrow (A,Z+2)$

Searched in double electron spectra

<u>2νββ:</u>

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Total energy of the transition

Low Background Few counts expected

Detecting energy as temperature increase

Thermometer is made of neutron transmutation doped germanium

CUORE detector: 988 crystals simultaneously operated

Cryogenic Underground Observatory for Rare Events

The first tonne-scale operating cryogenic 0vßß decay experiment

Cryogenics 102, 9-21 (2019)

19 towers \rightarrow 13 floors \rightarrow 4 crystals

> Controlled materials Clean environment

Custom cryostat for cryogenic operation

Hosted in Gran Sasso underground laboratory Shielding from cosmic rays

Data organized in subsequent datasets - O(month)

Delimited by calibrations with ²³²Th+⁶⁰Co

15 datasets included in the analysis934/988 (94.5%) channels included on average in the analysis

TeO₂ exposure = 1038.4 kg·y 130 Te exposure = 288 kg·y

Offline data analysis procedure – for each dataset

Response modelled on the 2615 keV line from ²³²Th chain

Accounts for non idealities

Calibration FWHM resolution: (7.78 ± 0.03) keV at 2615 keV

Background resolution rescaled to the Q_{value} : (7.8 ± 0.5) keV at 2527 keV Preserve only $0\nu\beta\beta$ candidate events with best possible efficiency

Anticoincidence cut (AC)

0vββ leaves all energy in a crystal

Select events accordingly

Time resolution is ±5ms Efficiency = 99.3%

Combined with the probability of a 0vββ event in a single crystal **Containment probability = 88.3%** from MonteCarlo simulations

Pulse shape discrimination (PSD)

Reconstruct the pulse with single PCA component

Difference is discrimination metric

Unblinded background data – region of interest (ROI)

Ονββ results

110 Counts / (2.5 keV) 100E Unbinned Bayesian fit 90% CI limit on Γ_{0v} 90⊨ Simultaneous on all datasets 80 70<u></u> Nuisance parameters as systematics 60<u></u><u>⊢</u> 50 E Includes uncertainties on 40 efficiencies 30F 2520 2490 2500 2510 2530 2540 2550

Median sensitivity: $T^{0v}_{1/2} > 2.8 \cdot 10^{25}$ yr Evaluated from toy Monte Carlo We had a background over fluctuation

Corresponding limits on m_{BB}

Oscillation parameters from NUFIT 2020 are used. All limits are at 90% C.L. and 3 σ uncertainty is shown on the inverted and normal hierarchy bands.

CUORE searches beyond 0vββ

High mass

Stable data-taking

Low background

Granular detector

Ideal detector for multiple rare processes

¹²⁸Te Ονββ

¹²⁰Te β⁺EC

 ^{130}Te excited $0\nu\beta\beta$

¹³⁰Te 2νββ

2vββ results – from 300.7 kg·y

Best measurement for ¹³⁰Te $2\nu\beta\beta$

Fit of Monte Carlo simulations to the background spectrum

Reconstruct and disentangle the contributions

CUORE is the first tonne-scale operating cryogenic 0vßß decay experiment

Stable data taking increasing towards 3 ton·yr

CUORE has analyzed 1 ton·yr of data

Best limit on ¹³⁰Te 0vββ

Initial background model defined

Best measurement of ¹³⁰Te 2vββ

Next steps

Background model on the full statistics, update of 0v results with increased statistics

Other physics analyses

... while working on the next generation $0\nu\beta\beta$ experiment

arXiv:1907.09376

The CUORE Upgrade with Particle IDentification (CUPID)

Physics goal:
$$T^{0v}_{1/2} > 10^{27} \text{ yr}$$

CUORE experience: ton scale cryogenic bolometer

CUPID-Mo and CUPID-0 experience with cryogenic scintillators

Thank you for your attention from all the CUORE collaboration

Backup slides

Experimental sensitivity

Maximum measurable half-life at a given C.L.

Isotope MassEnergy resolutionBackgroundMass scalability $\Delta \sim \%$ at Q_{value} High purity materialsHigh isotopic abundance $2v\beta\beta$ induced backgroundRejection techniques

Maximized through cryogenic calorimeters

Detecting energy as temperature increase

Energy resolution

Provided by the technique

Background

Control of materials

Isotope Mass

¹³⁰Te has ~30% natural istotopic abundance Multiple modules

Thermometer is made of neutron transmutation doped germanium

Optimum filter – more in depth

Digital filter deconvolving the noise

Transfer function that maximizes SNR

PCA says that the average pulse is the main component

Using a single component to reconstruct the pulse

Error given by the difference with rescaling

$$RE = \sqrt{\sum_{i=1}^{n} \left(\mathbf{x}_i - (\mathbf{x} \cdot \mathbf{w})\mathbf{w}_i\right)^2}$$

Error is normalized with respect to energy

Goal: cover the region where $0\nu\beta\beta$ is expected

Events are decrypted after the analysis is fixed

Systematic uncertainties due to the variation of nuisance parameters

Included one by one in the fit, checking effects on the outcome

Systematic	Prior
Total analysis efficiency I	Gaussian
Analysis efficiency II	Gaussian
Containment efficiency	Gaussian
Isotopic abundance	Gaussian
Q_{etaeta}	Gaussian
Energy bias and	Multivariate
Resolution scaling	in and variable

Discrepancies of the PSD efficiency between single calorimeters

Efficiencies in the analysis and relative uncertainties

Total analysis efficiency	92.4(2)%
Reconstruction efficiency	96.418(2)%
Anticoincidence efficiency	99.3(1)%
PSD efficiency	96.4(2)%
Containment efficiency	88.35(9)% [36

[36] C. Alduino et al. (CUORE), Phys. Rev. C 93, 045503 (2016), arXiv:1601.01334 [nucl-ex].

Resolution scaling and energy bias \rightarrow included as nuisances in the 0v $\beta\beta$ fit

Energy resolution scales with energy

Used to get the resolution at QValue

Energy bias due to imperfect calibration

Fed to the fit as nuisance parameter

Both dataset dependent

Systematic uncertainties effect on the 0vββ result

Fit parameter systematics						
Systematic	Prior	Effect on the	Effect on $\hat{\Gamma}_{\alpha}$			
	1 1101	Marginalized $\Gamma_{0\nu}$ Limit	Effect on 1.0ν			
Total analysis efficiency I	Gaussian	0.2%	< 0.1%			
Analysis efficiency II	Gaussian	0.3%	< 0.1%			
Containment efficiency	Gaussian	0.2%	< 0.1%			
Isotopic abundance	Gaussian	0.2%	< 0.1%			
Q_{etaeta}	Gaussian	$< 0.1 \cdot 10^{-27} m yr^{-1}$	$< 0.1 \cdot 10^{-27} \ {\rm yr}^{-1}$			
Energy bias and	Multivariate	$0.2 \cdot 10^{-27} \text{ yr}^{-1}$	$0.1 \cdot 10^{-27} \text{ yr}^{-1}$			
Resolution scaling	Withowariate	0.2 10 yr	0.1 ° 10 yr			

Effects evaluated with toy experiments

Exploit multiplicity to access specific signatures

 β and de excitation γ s M2 or M3 channels

Improved previous result by factor 5

$$T_{1/2}^{0\nu} > 5.9 \cdot 10^{24} yr (90\% \text{ C. L.})$$

Neutrinoless β⁺EC decay of ¹²⁰Te - 355.7 kg·y of TeO₂

Clear process under study: ${}^{120}\text{Te} + e^- \rightarrow {}^{120}\text{Sn} + X + 2\gamma_{511\text{keV}}$ Isotopic abundance 0.09% 0.24 kg·yr of ${}^{120}\text{Te}$

Multiple M1 to M3 signatures

10 times better than previous studies

$$T_{1/2}^{0\nu} > 2.9 \cdot 10^{22} yr (90\% \text{ C. L.})$$

Signature	Particles	Signal Peak	Multiplicity	Energy range [keV]			Containment efficiency
	Detected	Position $[keV]$		ΔE_0	ΔE_1	ΔE_2	$arepsilon_{ m mc}$ [%]
(a)	$\beta^+ + X + \gamma_{511}$	1203.8	1	[1150, 1250]			12.8(5)
(b)	$\beta^+ + X + 2\gamma_{511}$	1714.8	1	[1703, 1775]			13.1(5)
(c)	$\left(eta^+ + X, \; \gamma_{511} ight)$	(692.8, 511)	2	[650, 750]	[460, 560]		4.10(20)
(d)	$(\beta^+ + X + \gamma_{511}, \gamma_{511})$	(1203.8,511)	2	[1150, 1250]	[460, 560]		13.8(6)
(e)	$(\beta^+ + X, \gamma_{511}, \gamma_{511})$	(692.8, 511, 511)	3	[650, 750]	[460, 560]	[460, 560]	2.15(9)

Second most abundant isotope

i.a. 31.7% \rightarrow 188 kg·yr of ¹²⁸Te

 $Q_{\beta\beta} = 866.7 \text{ keV}$ 2v and $\beta\gamma$ background

Selecting M1 events in the region of interest

30 times better than previous direct limit

$$T_{1/2}^{0\nu} > 3.6 \cdot 10^{24} yr (90\% \text{ C. L.})$$

Double beta decay and nuclear structure

 $\beta\beta$ decay is suppressed with respect to β decay, and it is therefore difficult or impossible to observe

β decay is forbidden for certain even-even nuclei, so ββ decay may be seen

Ονββ formulas and theoretical references

Corresponding limits on m_{BB}

Oscillation parameters from NUFIT 2020 are used. All limits are at 90% C.L. and 3 σ uncertainty is shown on the inverted and normal hierarchy bands.

Theoretical importance of 0vββ searches

Different possible generator masses and couplings to neutrinos

All BSM features → new phenomenologies

Theoretical importance of 0vββ searches

- Each model leads to different predictions with respect to the physics of $0\nu\beta\beta$
- Two different main scenarios:

Preserve only $0\nu\beta\beta$ candidate events with best possible efficiency

Anticoincidence cut (AC)

Ovββ leaves all energy in a crystal Select events accordingly

Time resolution is ±5ms

Efficiency = 99.3%_{Anticoincidence} · 88.3%_{containment}

Efficiency uncertainties included in the final fit

Pulse shape discrimination (PSD)

Reconstruct the pulse with single PCA component

Difference is discrimination metric

$0v\beta\beta$ results

Number of toy experiments

600₽

500E

400E

300₽

200F

100E

