

Investigating collective effects in small collision systems using PYTHIA8 and EPOS 4 simulations

A. Manea, D. Brandibur, A. Danu, A. Dobrin (Institute of Space Science)

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

Ridge in pp: first observation

- Minimum bias pp
 - Non-flow contributions
 - Near side jet peak (+ resonances, HBT effects)
 - Recoil jet in away side

- Minimum bias pp
 - Non-flow contributions
 - Near side jet peak (+ resonances, HBT effects)
 - Recoil jet in away side

- High multiplicity pp
 - Near side ridge, typical of collective systems
 - Decomposed into Fourier harmonics \boldsymbol{v}_n

$$1 + \sum_{n=1}^{\infty} 2 \mathbf{v}_n \cos(n(\varphi - \Psi_n))$$

v_n coefficients

• v_n dependence on collision system but not on energy

 v_n coefficients

- v_n dependence on collision system but not on energy
- Mass ordering observed in high multiplicity p-Pb and pp collisions
 - Test particle type dependence at high $\boldsymbol{p}_{_{\!T}}$

A. Manea - ICNFP 2023

Sources of collectivity

- Final state effects
 - Initial spatial eccentricities converted into momentum anisotropies via final state interactions
 - Hydrodynamics
 - Parton transport
 - Parton escape
- Initial state effects
 - Initial momentum anisotropies from initial interactions
 - Color Glass Condensate (CGC) Glasma
 - Color-field domains
 - Numerical solutions

How to disentangle different regimes?

Our approach: macroscopic vs microscopic models

- Macroscopic model: EPOS 4
 - Core–corona model with statistical hadronization
 - Collective effects from hydrodynamical evolution of the medium

A. Manea - ICNFP 2023

Our approach: macroscopic vs microscopic models

- Macroscopic model: EPOS 4
 - Core–corona model with statistical hadronization
 - Collective effects from hydrodynamical evolution of the medium

- Microscopic model: PYTHIA8
 - QCD strings with LUND fragmentation
 - Collective effects from new processes
 - Color reconnection, rope hadronization, ...

Experimental methods

η

+1

• Scalar product (SP) method

S. Voloshin et al., arXiv:0809.2949

$$v_n \{ SP \} = \frac{\langle \langle \mathbf{u}_{n,k} \mathbf{Q}_n^* / M \rangle \rangle}{\sqrt{\langle \mathbf{Q}_n^{*a} \mathbf{Q}_n^{*b} / (M^a M^b) \rangle}}$$

 $\begin{array}{ll} \mbox{Particles of Interest (POI)} & \mbox{Reference} \\ u_{n,x} = \cos(n\,\phi) & Q_{n,x} \\ u_{n,y} = \sin(n\,\phi) & Q_{n,y} \end{array}$

Reference Particles (RPs)

$$Q_{n,x} = \sum_{i} \cos(n \phi_{i})$$

 $Q_{n,y} = \sum_{i} \sin(n \phi_{i})$

Experimental methods

- Scalar product (SP) method
- S. Voloshin et al., arXiv:0809.2949

$$v_n \{ SP \} = \frac{\langle \langle \mathbf{u}_{n,k} \mathbf{Q}_n^* / M \rangle \rangle}{\sqrt{\langle \mathbf{Q}_n^{*a} \mathbf{Q}_n^{*b} / (M^a M^b) \rangle}}$$

Particles of Interest (POI) Re $u_{n,x} = cos(n \phi)$ $u_{n,y} = sin(n \phi)$

Cumulants

- 2- and 4-particle azimuthal correlations for an event

 $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_j)) \rangle, i \neq j \\ \langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, i \neq j \neq k \neq l$

- Averaging over all events $\rightarrow 2^{nd}$ and 4^{th} order cumulants

$$c_{n}\{2\} = \langle \langle 2 \rangle \rangle = v_{n}^{2}$$
$$c_{n}\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$$

A. Bilandzic et al., PRC 83, 044913 (2011) J. Jia et al., PRC 96, 034906 (2017)

Experimental methods

- Scalar product (SP) method
- S. Voloshin et al., arXiv:0809.2949

$$v_n \{ SP \} = \frac{\langle \langle \mathbf{u}_{n,k} \mathbf{Q}_n^* / M \rangle \rangle}{\sqrt{\langle \mathbf{Q}_n^{*a} \mathbf{Q}_n^{*b} / (M^a M^b) \rangle}}$$

Particles of Interest (POI) Re $u_{n,x} = cos(n \phi)$ $u_{n,y} = sin(n \phi)$

$$\begin{array}{l}
\mathbf{Q}_{n} / (\mathbf{M}^{a}\mathbf{M}^{b}) \\
\text{Reference Particles (RPs)} \\
\mathbf{Q}_{n,x} = \sum_{i} \cos(n \varphi_{i}) \\
\mathbf{Q}_{n,y} = \sum_{i} \sin(n \varphi_{i})
\end{array}$$

Cumulants

- 2- and 4-particle azimuthal correlations for an event

 $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_j)) \rangle, i \neq j \\ \langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, i \neq j \neq k \neq l$

- Averaging over all events $\rightarrow 2^{nd}$ and 4^{th} order cumulants

$$c_{n}\{2\} = \langle \langle 2 \rangle \rangle = v_{n}^{2}$$
$$c_{n}\{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$$

Methods have different sensitivity to non-flow and fluctuations
 A. Manea - ICNFP 2023

A. Bilandzic et al., PRC 83, 044913 (2011) J. Jia et al., PRC 96, 034906 (2017)

- Small differences when using UrQMD
- Different behavior for hydro and core

07/19/23

A. Manea - ICNFP 2023

- Small dependence on $|\Delta \eta|$ gap for $c_2\{2\}$

- $c_2{4} \sim 0 \rightarrow$ expected for Gaussian fluctuations

"v₃" in EPOS4 (hydro+UrQMD): minimum bias pp @ 13.6 TeV

- c₃{2, |Δη|} ~ 0 and c₃{4} ~ 0 at high multiplicities
 - Small dependence on $|\Delta\eta|$ gap for $c_3\{2\}$
- "Mass ordering" more pronounced for large |Δη| gap

14

- Small unlerences between pp delauit and tope nation
- Similar trends in pp and p-Pb default

A. Manea - ICNFP 2023

- Small dependence on $|\Delta \eta|$ gap for $c_2\{2\}$

- $c_2{4} \sim 0 \rightarrow$ expected for Gaussian fluctuations

"v₃" in PYTHIA 8.309 (default): "In pythic the state of the state of

- $c_3\{2, |\Delta\eta|\} < 0$ and $c_3\{4\} \sim 0$ at high multiplicities
 - Small dependence on $|\Delta\eta|$ gap for $c_{3}\{2\}$
- "Mass ordering" more pronounced for small $|\Delta\eta|$ gap

07/19/23

v₃" in PYTHIA 8.309 (default): سinimum bias pp @ 13.6 TeV and p-Pb @ 5.02 TeV

A. Manea - ICNFP 2023

07/19/23

Summary

- Investigate collective effects in EPOS4 and PYTHIA 8 simulations
 - Different trends for various settings
- c_2 {2} decreasing with increasing multiplicity and $|\Delta \eta|$ gap
 - Small dependence on |Δη| gap
- $c_2{4} \sim 0$ at high multiplicities
 - Expected for Gaussian fluctuations
- Mass ordering for u_2Q_2 when a large $|\Delta\eta|$ gap is employed
 - Crossing between pions and protons u_2Q_2 in PYTHIA 8 Angantyr p-Pb simulations
 - No particle type grouping