

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

High-Luminosity LHC

High-Luminosity LHC: 2029 and beyond

- The peak instantaneous luminosities: $L \sim 7.5 \times 10^{34} cm^{-2} s^{-1}$
- Collecting 10 times the data sample than the Run3 in the long term
- ~ 10 Times more interactions per proton bunch crossing
 - High pile-up density => increasing reconstruction complexity
- Harsh radiation environment up to $2 \times 10^{15} n_{eq} cm^{-2}$
 - impact on detector technologies, electronics, and materials

ATLAS Inner Tracker Performance

• Pile-up of ~ 200 spread in ~ 45 mm along the beam axis

1.6 vertices/mm on average

- Inner Tracker (ITk) is designed to cope with high pile-up density, but still challenging in the forward region
 - σ_{z0} should be significantly better than the inverse of the average pile-up density (~ 0.6mm)

✓ Exploit the time dimension of the beam spot

- Discriminating tracks from pile-up vertices with the same z but different time
- With the expected time resolution => pile-up suppression by a factor of ~ 6

High Granularity Timing Detector

The HGTD located at $z = \pm 3.5$ m, between ITk and the end-cap calorimeter

Requirements

- Time resolution:
 - per track: 30 ps (start) and 50 ps (end of lifetime)
 - per hit: 35 ps (start) and 70 ps (end of lifetime)
- Radiation hardness:
 - Maximum n_{eq} fluences: $2.5 \times 10^{15} n_{eq} cm^{-2}$
 - \circ Total Ionising Dose (TID): 2 MGy at 4000 fb^{-1}
- Collected charge per hit > 4 fC
- Hit efficiencies: 97% (95%) at the start (end) of their lifetime

Technology

- Sensor: Low Gain Avalanche Detector (LGAD)
- Front-end electronics: ATLAS LGAD Timing ReadOut Chip (ALTIROC)

High Granularity Timing Detector

Detector Design

- Maximum thickness in z = 125 mm
- Active area 6.4 m², radius 120 mm < R < 640 mm corresponding to 2.4 < |η| < 4
- Two double-side layers mounted on the cooling disk
- Three rings layout with different active sensors overlap 70%, 50%, 20%
 - Inner ring replaced every 1000 fb^{-1}
 - Middle ring replaced after 2000 fb^{-1}
 - Outer ring never replaced

HGTD Module

- 2 LGADs (15x15 pads) + 2 ASICs (15x15 channel) + flex
- Flex cable carrying all connections between the ASIC and the peripheral electronics (it also provides HV for the sensor)
- 8032 modules with 3.6 M channels operating at -30°C

HGTD Sensor

Low Gain Avalanche Detector

- LGAD: silicon detector with an extra thin p-layer (<5 μm) highly doped below the junction p-n
 - Creating high E-field -> internal gain 20 (start), 8 (end of lifetime)
- Excellent time resolution (30 ps before irradiation)
- Pad size: 1.3 x 1.3 mm²
- Thin sensor 50 μ m
 - Faster rise time ~ 0.5 ns
 - Good radiation tolerance
- Several prototypes of LGADs
 - CNM (Spain), HPK (Japan), FBK (Italy), USTC/IHEP-IME (China), NDL (China)

IHEP-IMEv2 LGAD wafer with full size (15 x 15)

FBK UFSD4.0

Evaluation of the performance of sensors at test beam 2021-2022 campaigns:

- Determine safe bias voltages to avoid "single event burnout" (SEB)
- Qualify carbon-enriched LGADs performance:
 - collected charge, time resolution, and efficiency

List of sensors

Device name	Vendor	Sensor ID	Implant	Irradiation type	Fluence [n _{eq} /cm²]	Tested at
CNM-0	CNM	W9LGA35	boron	unirradiated	-	DESY/CERN
FBK-1.5	FBK	UFSD3.2 W19	boron + carbon	neutrons	1.5x10 ¹⁵	DESY/CERN
FBK-2.5	FBK	UFSD3.2 W19	boron + carbon	neutrons	2.5x10 ¹⁵	DESY/CERN
USTC-1.5	USTC-IME	v2.1 W17	boron + carbon	neutrons	1.5x10 ¹⁵	DESY
USTC-2.5	USTC-IME	v2.1 W17	boron + carbon	neutrons	2.5x10 ¹⁵	DESY
IHEP-1.5	IHEP-IME	v2 W7 Q2	boron + carbon	neutrons	1.5x10 ¹⁵	DESY/CERN
IHEP-2.5	IHEP-IME	v2 W7 Q2	boron + carbon	neutrons	2.5x10 ¹⁵	CERN

- 3 vendors FBK, USTC-IME and IHEP-IME
- Sensors irradiated at $1.5 \times 10^{15} n_{eq} cm^{-2}$ and $2.5 \times 10^{15} n_{eq} cm^{-2}$ at the TRIGA reactor in Ljubljana, Slovenia with fast neutrons

CERN North Area SPS H6A beamline (120 GeV pion beam)

DESY T22 beamline (5 GeV e- beam)

Single Event Burnout (SEB)

- Single Event Burnout (SEB) has been observed in several test beam campaigns
 - After irradiation timing performance degrades due to loss of gain
 - Increasing the bias voltage to recover
 Irreversible

 breakdown while operating in these conditions
 - Observed by CMS/ATLAS/RD50 teams
- A safe zone has been defined
 - Safe zone <11 V/μm our case LGAD 50 μm → max voltage is 550 V

ATLAS HGTD Preliminary

ICNFP - 10 to 23 July 2023

Collected Charge

- arxiv:2303.07728
- Fitting the Region Of Interest (ROI) with a Landau-Gaussian convoluted function
- Collected Charge is defined as the Most Probable Value (MPV) from fit

ICNFP - 10 to 23 July 2023

Time resolution

- To extract the LGADs' time resolutions, the distributions of the difference between the TOA of the LGAD and that of the time reference device ($\sigma_{\text{SIPM}} = 62.6 \text{ ps}, \sigma_{\text{CNM}} = 54.8 \text{ ps}$) were fitted with a Gaussian function, each of them giving a width σ_{ij}
- Three devices in these setups, the resolution of each one is calculated as:

Hit Efficiency

Hit Efficiency = $\frac{\text{Reconstructed tracks with } q > Q_{\text{cut}}}{\text{Total reconstructed tracks}}$

• Setting $Q_{cut} = 2 \text{ fC} => \text{minimum value of the discriminator of the future ALTIROC}$

ATLAS LGAD Timing ReadOut Chip (ALTIROC)

ALTIROC (TSMC 130 nm CMOS)

- Reads the signal from each LGAD sensor
- 225(15x15) Channels → Each single-channel readout fits within the sensor pad (1.3mm)
- Providing the Time Of Arrival (TOA), Time Over Threshold (TOT) for time walk correction

Requirements

- Providing strict jitter
 - Jitter < 25 ps @ 10 fC and <65 ps @ 4 fC
- Discriminator threshold minimum of 2 fC
- ALTIROC prototypes
 - ALTIROC1: 25 (5x5) channels prototype, with all analog functionality
 - ALTIROC2: 225 (15x15) channels full prototype, including all functionalities
 - ALTIROC3: Radiation hard version of ALTIROC2 (under test)

ALTIROC2 + HPK 15x15 LGAD

Test beam measurement

- ALTIROC1
 - Focus on the performance of analogue electronics
 - Fit of TOA variation as a function of the TOT is used to calculate time-walk corrections
 - Estimated resolution of ~ 46 ps after time-walk correction
 - Estimated jitter contribution: ~ 39 ps

arxiv:2306.08949

ALTIROC2

- 100% efficiency for each pixel
 - Hit Efficiency = $\frac{\text{the reconstructed tracks with a hit seen by ALTIROC}}{\text{all reconstructed tracks that hit module area}}$
- Efficiency measured in the interpad region
 - interpad region size at 50% 50% of efficiency is 65.3 +/- 0.2 μm.

ICNFP - 10 to 23 July 2023

Demonstrator project

The purpose of the demonstrator project is to validate different components of the overall HGTD project

Heater Demonstrator

- Verify the CO₂ cooling capabilities and identify the best thermal media between modules and the cooling plate
 - Using silicon heaters to model the thermal properties of modules

DAQ Demonstrator

 Construct a complete DAQ chain to test the communication link between module emulators and a backend server

A full demonstrator under preparation with 55 modules connected to a peripheral electronic board (PEB) prototype

- Timing information will play a crucial role to mitigate the impact of pile-up in the challenging environment of the HL-LHC
- The High Granularity Timing Detector will provide the timing information using the LGAD technology to improve the ATLAS performance in the forward region
- Carbon-enriched LGADs meet the requirements up to the highest fluence and safely below SEB threshold
 - Collected charge, time resolution, and efficiency
- Readout electronics are still under test (V3 irradiation resistant)
 - Test beam scheduled in September

Back up

Efficiency of track isolation requirement for forward e⁻

Suppression of pile-up jets

Timing resolution per-hit and per-track

overview of contributions to the time resolution:

