Recent results on associated top quark production and searches for new top-quark phenomena with the ATLAS detector

A. Ghosal, 17 Jul 2023

Arpan Ghosal (Universität Siegen) on behalf of the ATLAS collaboration

Overview

- Top quark in association with bosons
 - Essential for testing SM and probing new physics
- **BSM** searches with top quarks

• New results: Cross section measurements and charge asymmetry studies in $t\bar{t}W$ and $t\bar{t}\gamma$

• Top plays integral part in multiple BSM due to heavy mass, highest coupling to Higgs

 Multiple analyses searching for new particles with top quarks in final state: search for **Vector-Like quarks**, heavy resonances such as Z' etc. (not a part of this talk)

 Many BSM introduce new particles that enhance FCNC interactions; top decay processes excellent probe for such particles (New results on t \rightarrow qZ, t \rightarrow qX(bb), cLFV tµtq)

General strategies involve MVA techniques to improve signal sensitivity, profile-likelihood to constrain systematics, unfolding on reconstructed data for differential measurements

Top Production with Bosons

Rare processes that

- test electroweak couplings of top quarks with bosons as predicted by SM
- probe anomalous couplings for potential signs of new physics

- test higher-order calculations and Monte Carlo simulations for better modelling,

- are **irreducible background** to many BSM searches and to important SM measurements (such as $t\bar{t}H$)

ATLAS collected huge dataset (139 fb⁻¹) during Run 2 allowing for first measurements of very rare processes, perform differential measurements, study top-boson couplings to greater precision

ttw Inclusive and Differential [ATLAS-CONF-2023-019]

- Rich phenomenology from charge-asymmetric production and complex higher order QCD and EWK corrections
- Observed in Run 1; Run 2 makes precise measurements possible
- Irreducible source of same-sign dilepton pairs dominant background for other rare searches (e.g ttH and tttt)
- Measurement done on events with **3***ℓ* or **same-sign 2***ℓ*
- Signal and Control regions defined on basis of number of jets, b-tagged jets, lepton charge and flavour
- Major backgrounds:
 - **irreducible**: diboson, $t\overline{t}Z$
 - **reducible**: fake/non-prompt leptons mainly from $t\bar{t}$ production, electrons with charge misassignment (QMisID)

ttWInclusive [ATLAS-CONF-2023-019]

 Simultaneous profile-likelihood fit to data using event yields in 56 SRs and 10 CRs

 $\sigma(t\bar{t}W) = 890 \pm 50 \text{ (stat.)} \pm 70 \text{ (syst.)} = 890 \pm 80 \text{ (tot.)} \text{ fb}$

- Consistent with SM at 1.5 σ : 722 $^{+70}_{-78}$ (scale) ± 7 (PDF) fb (JHEP 11 (2021) 029)
- Ratio $(t\bar{t}W^+/t\bar{t}W^-)$ in good agreement with prediction

 $R(t\bar{t}W) = 1.95^{+0.21}_{-0.18}(\text{ stat.})^{+0.16}_{-0.13}(\text{ syst.})$

 $R(t\bar{t}W) = 1.92 \pm 0.02$ (scale) ± 0.04 (PDF) (FXFX, JHEP 11 (2021) 029

- Relative charge asymmetry, A_c^{rel} , also in very good agreement with prediction
- Major systematics tt W modelling, prompt lepton background normalisation

ttWDifferential [ATLAS-CONF-2023-019]

A. Ghosal, 17 Jul 2023

• Profile Likelihood Unfolding to measure differential absolute and normalised cross-sections at particle level - 7 unfolded observables (H_T , no. of jets, angular distance between lepton and b-jet, etc...)

- Slight disagreement in absolute cross-section measurements
- Normalised cross-section in good agreement with data
- Differential uncertainties dominated by low data statistics and $t\bar{t}W$ modelling

Observation of tqy [arXiv:2302.01283]

- Final state signature: one lepton, one photon, one b-tagged jet, one forward-jet of t-channel production and missing transverse momentum
- Two SRs defined w/o and w/ forward jets
- Largest background contribution: processes with prompt photons ($t\bar{t}\gamma$ and $W\gamma$)
- Dedicated control regions defined for $t\bar{t}\gamma$ and $W\gamma$
- Data-driven estimate of background processes with misidentified (fake) objects, e.g. $e \rightarrow \gamma$, hadron $\rightarrow \gamma$ fakes
- Neural networks trained on 12 (15) variables in the region w/o forward jet (1 forward jet) to separate signal from the background

 e, μ

Observation of tqy [arXiv:2302.01283]

- Cross section measured in a fiducial phase space at parton level (only events with photons radiated from top) and at particle level (events where photons can be from production and decay) using a profile-likelihood unfolding
- **Parton level:**
- **Particle level:**

 $\sigma_{tq\gamma} \times BR(t \rightarrow \ell \nu b) = 688 \pm 23(\text{stat})^{+75}_{-71}(\text{syst}) \text{ fb}$ $\overline{(\sigma_{ta\gamma}^{QCD+EW\,NLO}=515^{+36}_{-42}}$ fb) agreement at 2.1 σ $\sigma_{tq\gamma} \times BR(t \rightarrow \ell \nu b) + \sigma_{t \rightarrow \ell \nu b \gamma q} = 303 \pm 9(\text{stat})^{+33}_{-32}(\text{syst}) \text{ fb}$ $\overline{(\sigma_{ta\gamma}^{QCD+EW\,NLO}=217^{+27}_{-15}\text{ fb})}$ agreement at 2.0σ

- **First observation:** Observed (expected) significance: 9.3σ (6.8 σ)
- Major systematics: $t\bar{t}\gamma$ and $t\bar{t}$ modelling, limited signal and background MC statistics

Charge Asymmetry: tty Phys. Lett. B 843 (2023) 137848

- Enhanced asymmetry in $t\bar{t}\gamma$ production compared to $t\bar{t}$
 - Larger fraction of $q\bar{q}$ initiated processes
 - Dominant LO EW contribution to A_c: interference between QED initial- and final-state radiation in $t\bar{t}\gamma$ production

$$A_{\rm C} = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_t| < |y_{\bar{t}}|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_t| < |y_{\bar{t}}|)}$$

- *tt* events with exactly one additional high-p_T, isolated photon selected
- Only $t\bar{t}\gamma$ production chosen as signal to overcome dilution from $t\bar{t}$ decays
- Data-driven estimate of background processes with fake objects (similar to $tq\gamma$ measurement)
- Neural network to discriminate signal from background ($O_{NN} <$ 0.6 background enriched and $O_{NN} > 0.6$ for signal enriched)

Charge Asymmetry: tty Phys. Lett. B 843 (2023) 137848

A. Ghosal, 17 Jul 2023

• Reconstruct top quark pairs using kinematic likelihood fit to define pseudorapidities y_t and $y_{\overline{t}}$

• Simultaneous maximum-likelihood unfolding of $|y_t| - |y_{\bar{t}}|$ performed in 2 regions defined by O_{NN}

$$A_c = -0.003 \pm 0.024$$
(stat) ± 0.017 (

(SM at NLO: $A_c = -0.014 \pm 0.001$ (scale))

- **Dominated by data statistics**
- Major systematics: MC statistics for promptphoton background, experimental systematic sources related to jets and $E_{\mathrm{T}}^{\mathrm{miss}}$

Charge Asymmetry: ttW [arXiv:2301.04245], accepted by JHEP

- Enhanced asymmetry compared to $t\bar{t}$
 - $q\bar{q}$ initiated processes dominate
 - W emission from initial states polarises t and \overline{t}
 - Larger asymmetry in decay products
- First study in **3***l* final state with requirements on number of jets, b-tagged jets, missing transverse momentum imposed to define SR
- CRs defined to constrain major backgrounds ($t\bar{t}Z$, non-prompt leptons from heavy flavour hadron decays)
- 5-fold BDT trained to correctly match leptons to either t or \overline{t} with 71% accuracy

Charge Asymmetry: ttW [arXiv:2301.04245], accepted by JHEP

• Simultaneous profile-likelihood fit performed to event yields in all SRs and CRs.

A. Ghosal, 17 Jul 2023

- Unfolding based on a profile-likelihood
- Measurement at particle level in a fiducial phase space close to the reco. level selection
- Lepton-top association based on m_{lb} discriminant with 65% efficiency to select correct leptons

$$A_c^l = -0.112 \pm 0.170$$
(stat) ± 0.055 (syst) [Particle |

(Sherpa: $A_c^l = -0.063^{+0.007}_{-0.004}$ (scale) ± 0.004 (MC stat))

$$V_{j_{m{e}t_{\mathcal{S}}},\ \Delta\eta^{\star}}$$

FC

- Hig tre
- En SU
- Ob evi

FCNC Searches v	vith Top		+ g t W ⁺
 Highly suppressed in SM because of GIN tree level diagrams 	l and forbidden	W ⁺ b u/c	ℓ ℓ^+ h
• Enhanced couplings in several BSM scer SUSY, composite Higgs etc.)	narios (2HDM,	h	Bood u/c t
 Observation of enhanced rates would be evidence for new physics 	a clear		H'
	Process SM	ATLAS (Current	E limits on the BR)
• Multiple top ECNC couplings already	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$0.85 \cdot 10^{-5}$ $4.2 \cdot 10^{-5}$	— <u>Phys. Lett. B 842 (2023) 137379</u>
measured in ATLAS in Run 2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$0.61 \cdot 10^{-4}$ $3.7 \cdot 10^{-4}$	 <u>Eur. Phys. J. C 82 (2022) 334</u>
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$6.2 \cdot 10^{-5}$ $13 \cdot 10^{-5}$	arXiv:2301.11605 now accepted
	$t \rightarrow uH \mid 2 \cdot 10^{-17} \mid$	$6.9 \cdot 10^{-4} (H \to \tau \tau)$	<u>JHEP06(2023)155</u>
	$t \rightarrow cH \mid 3 \cdot 10^{-15} \mid$	$9.4 \cdot 10^{-4} (H \to bb)$ $8.8 \cdot 10^{-4} (H \to bb)$	<u>arXiv:2301.03902</u>

d by PRD !!

FCNCt \rightarrow qZ

[arXiv:2301.11605], accepted by PRD

- Several BSM predict BR between 10⁻⁴ and 10⁻⁷ (SM at 10⁻¹⁴)
- Main backgrounds: prompt leptons from ttZ and diboson
- Gradient Boosted Decision Trees target separately tZu production, tZc production and the tt decay process

A. Ghosal, 17 Jul 2023

• Search for **tZu or tZc coupling** in **3***l* final states based on opposite sign, no. of jets and b-jets and missing transverse momentum

Discriminators based on multiple variables - reconstructed SM and FCNC top masses, angular separation between top and leptons etc.

	Observable	Vertex	Coupling	Observed	Expected
kg		SRs+CRs			
	$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 1$
	$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 1$
	$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10$
	$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10$
1					

- Data in good agreement with SM expectations, no excess seen
- Limits improved by x3 (x2) for tZu (tZc) from previous 36 fb⁻¹ results

 $\mathsf{D}_2^{\mathsf{u}}$

FCNC $t \rightarrow qX(bb)$

[arXiv:2301.03902]

- Non-SM Higgs field X with flavour charge (**flavon**) enhances FCNC couplings
- Search for the **light**, **neutral scalar X** in FCNC top decays in tt events
- Performed separately for $t \rightarrow uX$ and $t \rightarrow cX$ with $X \rightarrow bb$
- NN trained on jet and lepton kinematics and m_{bb} with m_x at 30, 80, 120 GeV

A. Ghosal, 17 Jul 2023

• No signal excess but upper limits on BR(t \rightarrow uX) and BR(t \rightarrow cX) of ~2x10⁻⁴

• Limits on BR(t \rightarrow qH) on average x3 improved with respect to previous 36 fb⁻¹ results

cLFV tµtq

[ATLAS-CONF-2023-001]

- Charged lepton flavour violation in BSM (leptoquarks)
- Search for cLFV vertex in both production and decay processes
- Focus on 3ℓ selection: μμτ_{had-vis} / μμμ / eμμ
- Dedicated fake τ_{had-vis} and non-prompt muon estimation

A. Ghosal, 17 Jul 2023

 No signal excess but upper limits on BR(t→uτq) derived from Wilson coefficients in EFT (better than ATLAS FCNC tZq)

	Dominated by	v stat.	uncert.	in	data
--	---------------------	---------	---------	----	------

	$\Big \ 95\% \ { m CL} \ { m upper} \ { m limits} \ { m on} \ { m BR}(t o \mu au q)$					
	Stat. only All systema					
Expected	8×10^{-7}	10×10^{-7}				
Observed	9×10^{-7}	11×10^{-7}				

Summary

- Presented recent results for:
 - Top production with associated boson $t\bar{t}W$ inclusive and differential $\geq\geq$ Observation of $tq\gamma >>$ Charge Asymmetry: $t\bar{t}\gamma >>$ and $t\bar{t}W >>$ New Phenomena searches for BSM FCNC t \rightarrow qZ \geq > FCNC t \rightarrow qX(bb) $\geq \geq$
 - cLFV tμτq >>
- Top sector remains an attractive testing ground for multiple BSM and new physics phenomena
- Extensive searches going on in ATLAS: List of publications and conference notes

Run 3 data on the way - more opportunity for precise measurements and searches in the top quark sector **Particle Physics**

A. Ghosal, 17 Jul 2023

Asymmetry in Percent

ttW inclusive and differential [ATLAS-CONF-2023-019]

2-D likelihood scan of ttW⁺ and ttW⁻

ttWdifferential [ATLAS-CONF-2023-019]

unfolded distributions of the lepton charge split absolute and normalised cross-sections, as a function of jet multiplicity.

ttW differential [ATLAS-CONF-2023-019]

BSM searches with Top

- Top quark plays important role in BSM

 - models predict new particles with possible interactions with top (can affect decays and couplings) - heavy mass, close to EW scale - lucrative for grand unification of gauge couplings
 - highest Yukawa coupling to Higgs boson

- Various BSM theories already proposed dark matter, composite Higgs models, 2HDM, MSSM, Higgs triplet etc. ...
- Numerous ATLAS analyses already involved in BSM studies light pseudoscalars that mix with fields in extended Higgs scenario, VLQs produced in pairs or singly at the LHC, FCNC and cLFV

tta, $a \rightarrow \mu \mu$

[arXiv:2304.14247]

- Search for light pseudoscalars with large couplings to top quarks (predicted in 2HDM+a, NMSSM etc.) with $e\mu\mu$ or $\mu\mu\mu$ final states
- high mass resolution for muon pairs an excellent discriminator against most backgrounds
- Main backgrounds: prompt muons from ttZ, non-prompt from tt and Z+jets

A. Ghosal, 17 Jul 2023

120 GeV < $m_{H^{\pm}}$ < 160 GeV

[arXiv:2305.03401]

- Search focused on T \rightarrow Ht and T \rightarrow Zt in singlet and doublet configurations
- backgrounds)

VLQ: Ht/Zt+X

A. Ghosal, 17 Jul 2023

T-quark mass as a function of the relative resonance width (Γ_T/m_T) and the relative coupling parameter ξ_W

ξ_w

VLQ: Single VLQ in multilepton final states

[ATLAS-CONF-2023-020]

- Very extensive VLQ-T search, 1 < m_T < 2.7 TeV and k \in [0.1,1]
- Focus on WTZt and ZTZt in singlet and doublet configurations
- Requirements on different multiplicity of jets, b-jets, forward jets and boosted tagged objects in multi-lepton selection for final states with Z decaying to lepton pairs
- 2ℓ regions dominated by Z+jets background, 3ℓ by diboson and t $\bar{t}+Z$

VLQ: Single VLQ in multilepton final states

[ATLAS-CONF-2023-020]

Top-philic heavy resonant search

[arXiv:2304.01678]

- Heavy vector resonances that strongly couple to top predicted by many BSM
- Focus on resonance between 1 and 3.2 TeV in fully hadronic decay mode
- Large radius jets as proxies for two heavily-boosted top quarks from resonance to calculate invariant mass
- Dijet background estimated in low signal contamination region
- Bump hunt search with minimal model dependence and model-dependent likelihood fit performed

A. Ghosal, 17 Jul 2023

*t*t̄) [fb] ATLAS chirality parameter $\theta = 0$ \sqrt{s} = 13 TeV, 139 fb⁻¹ $t(\bar{t})Z') \times B(Z')$ ----- Observed 95% CL upper limit for $c_t = 4$ ----- Observed 95% CL upper limit for $c_t = 1$ Expected 95% CL upper limit $(\pm 1\sigma)$ for $c_t = 4$ Expected 95% CL upper limit ($\pm 1\sigma$) for $c_t = 1$ 10³ - LO Z'(tt) cross-section for $c_t = 4$ ($\Gamma/m = 64\%$) 1 LO Z'(tt) cross-section for $c_t = 1$ ($\Gamma/m = 4\%$) dd)o 10¹ 10⁰ 1.25 1.50 1.75 2.00 2.25 2.50 2.75 1.00 *m_{Z'}* [TeV] Upper limits on Z' production computed based on simplified model

Top-philic heavy resonant search

[arXiv:2304.01678]

FCNCt \rightarrow qZ [arXiv:2301.11605]

0.12 Events / 0.18 160 ATLAS ATLAS Data Data 140 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\overline{}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ttZ+tWZ VV+LF tt Z+tWZ VV+LF Events 140 SR1 SR2 tZ VV+HF VV+HF tZ 120 D₁ > -0.6 Fake lep. Other bkg. $D_2^u > -0.7$ or $D_2^c > -0.4$ Fake lep. Other bkg 120 Post-Fit Bkg. uncertainty Post-Fit Bkg. uncertainty 100 --- FCNC (c)tZ \times 50 - FCNC (c)tZ \times 50 100 FCNC tt(cZ) × 50 FCNC $t\bar{t}(cZ) \times 50$ 80 80 60 60 40 40 20 20 Data / Bkg. Data / Bkg. 1.25 1.25 0.75 0.75 0.5 -0.4 -0.2 0.6 0.8 0.5 0.2 0.4 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 D₁

	Observable	Vertex	Coupling	Observed	Expec
F _		SRs+CRs			
bkg	$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	4.9 +2.1 >
-	$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4}$
	$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times$
	$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times$
	$ C_{\mu W}^{(13)*} $ and $ C_{\mu B}^{(13)*} $	tZu	LH	0.15	0.13 _
	$ C_{\mu W}^{(31)} $ and $ C_{\mu B}^{(31)} $	tZu	RH	0.16	0.14 _
-	$ C_{\mu W}^{(23)*} $ and $ C_{\mu B}^{(23)*} $	tZc	LH	0.22	0.20 +
	$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	0.19 _
		SR1+CRs			
	$\mathcal{B}(t \to Zq)$	tZu	LH	9.7×10^{-5}	8.6 +3.6 >
).8 1	$\mathcal{B}(t \to Zq)$	tZu	RH	9.5×10^{-5}	8.2 ^{+3.4} _{-2.3} >
D_2		SR2+CRs			
	$\mathcal{B}(t \to Zq)$	tZu	LH	7.8×10^{-5}	6.1 +2.7
	$\mathcal{B}(t \to Zq)$	tZu	RH	9.0×10^{-5}	6.6 ^{+2.9} _{-1.8} >

$FCNCt \rightarrow qX(bb)$

[arXiv:2301.03902]

cLFV tµtq [ATLAS-CONF-2023-001]

A. Ghosal, 17 Jul 2023

		95% CL	upper	limits on	BR(t -	$ ightarrow \mu au q)$	$(\times 10^{-1})$
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$
Expected (u)	4.6	4.2	4.0	4.5	2.5	2.5	5.8
Observed (u)	5.1	4.6	4.4	5.0	2.8	2.8	6.4
Expected (c)	54	51	51	52	35	35	61
Observed (c)	60	56	56	57	38	38	68

