

Institut für Physik, Humboldt-Universität zu Berlin

XII International Conference on New Frontiers in Physics OAC conference center, Kolymbari, Crete, Greece July 10-23, 2023

Daariimaa Battulga on behalf of the ATLAS Collaboration

•
$$\lambda > 0, \ \mu^2 < 0$$
 minimum at $\upsilon = \sqrt{-\frac{\mu^2}{2\lambda}} = 246 \, {\rm GeV}$

Rewriting the $\phi(x)$ as a function of the mass scalar Higgs field:

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \frac{\lambda v H^{3}}{4} + \frac{\lambda}{4}H^{4} - \frac{\lambda}{4}v^{4}, \qquad \lambda_{SM} = \frac{m_{H}^{2}}{2v^{2}} \simeq 0.129$$

 $Im(\phi)$

Re(\dot{)

What could we tell about the shape of the Higgs potential?

- Higgs boson couplings to SM particles are known \Rightarrow but not Higgs self coupling, λ_{HHH}
- Its form determines minimum, electroweak phase transition, and stability of the universe

Higgs self-coupling measurement at LHC

HH in ATLAS

2/16

erc

Direct measurement

erc

- Higgs-pair production to probe the λ_{HHH} via κ_{λ} , κ_{V} , κ_{2V}
- κ_{2V} could indirectly probe quartic Higgs coupling
 - Otherwise not sensitive at the LHC!

λ_{HHH} measurement in ATLAS:

- Di-Higgs to $b\bar{b}b\bar{b}$, $bb\bar{\tau}\tau$, $b\bar{b}\gamma\gamma$ via ggF and VBF with full Run 2 dataset of $\mathcal{L} = 126 139 \text{fb}^{-1}$
- VHH and indirect measurement via single Higgs production
- In addition, their combinations will be covered in this talk!

Most sensitive!

- $b\bar{b}b\bar{b}$ Highest BR, large background
- $b\bar{b} au au$ Medium BR, good rejection of background
- $b\bar{b}\gamma\gamma~$ Small BR, very clean signature

Today, these decay channels will be discussed!

ATLAS measures these decay channels!

Non-resonant $HH \rightarrow b\bar{b}b\bar{b}$

 $HH \rightarrow b\bar{b}b\bar{b}$ (highest BR \sim 33%) via ggF & VBF

- CERN-EP-2022-235 (2023)
- Suffer from large background multijet $\sim 90\%$ & fully hadronic $t\bar{t} \sim 10\%$ events
- 4 *b*-tagged jets paired to H-candidates via $\min \Delta R$
- Data-driven background estimation for multijet using neural network
- \hookrightarrow NN trained in CR to reweight 2*b* data to 4*b* region

6/16

Non-resonant $HH \rightarrow b\bar{b}b\bar{b}$: Results

 $H\!H \to b\bar{b}b\bar{b}$ results @ 95% CL

•
$$ggF + VBF$$
 , $\mathcal{L} = 126 \, fb^{-1}$

• Observed cross section upper-limit: $5.4 \times \sigma_{HH}^{SM}$

Non-resonant $HH \rightarrow b\bar{b}b\bar{b}$: SMEFT

 c_{HG} vs c_H

 $HH \rightarrow b\bar{b}b\bar{b}$ results @ 95% CL, ggF + VBF , $\mathcal{L} = 126$ fb⁻¹

• HH couplings limit in SMEFT interpretation:

 $-22 < c_H < 11$ & $-0.067 < c_{HG} < 0.060$ ¹²⁷ First time measured in ATLAS

 $HH
ightarrow b ar{b} au au$ (BR \sim 7.3%) via ggF + VBF

- 3 SRs defined based on di- τ system and trigger selection
- 1 lepton(e/μ) and 1 τ in $\tau_{\text{lep}}\tau_{\text{had}}$, 2 τ in $\tau_{\text{had}}\tau_{\text{had}}$ & 2-b-tagged jets
- Main backgrounds: $t\bar{t} \rightarrow bbWW \rightarrow bb\tau\tau$, Z+Heavy Flavour jets modelled in MC, & Jets are misidentified τ_{had} from $t\bar{t}$, & QCD multijet data-driven

To separate the signal from the background:

- MVA method employed for $\tau_{had}\tau_{had}$ (BDT), $\tau_{lep}\tau_{had}$ (NN)
- 8/16 Daariimaa Battulga o.b.o ATLAS Collaboration

 $\tau_{\text{lep}} \tau_{\text{had}}$: Single Lepton (SLT)

 $\tau_{\text{lep}} \tau_{\text{had}}$: Lepton – τ (LTT)

Non-resonant $HH \rightarrow bb\tau\tau$: Results

$$HH
ightarrow bar{b} au au$$
 , $\mathcal{L} = 139\,\mathrm{fb}^{-1}$

erc

CERN-EP-2022-109 (2022)

Final-discriminant bins from the τ_{had} τ_{had} , τ_{lep} τ_{had} SLT and τ_{lep} τ_{had} LTT categories are combined into bins of $\log_{10} (S/B)$.

Daariimaa Battulga o.b.o ATLAS Collaboration

HH in ATLAS

Non-resonant $HH \rightarrow b\bar{b}\gamma\gamma$

 $HH \rightarrow b \bar{b} \gamma \gamma$ (BR $\sim 0.26\%$) via ggF + VBF

Phys. Rev. D 106, 052001 (2022)

- Requiring 2 photons & 2 b-tagged jets; $m_{\gamma\gamma} \in [105, 160]$ GeV
- Signal region is subdivided low & high mass, targeting $\kappa_{\lambda} = 10 \text{ or } \kappa_{\lambda} = 1$
- **Main backgrounds:** $\gamma\gamma$ + jets with data-driven and single Higgs with MC based background estimation via analytical functional forms

11/16

Non-resonant $HH \rightarrow b\bar{b}\gamma\gamma$: Results

$HH ightarrow b ar{b} \gamma \gamma$ via ggF + VBF

Phys. Rev. D 106, 052001 (2022)

• Observed upper-limit on cross section: $4.2 \times \sigma_{HH}^{SM}$

Search for non-resonant VHH

Non-resonant HH production of λ_{HHH} via VH production

erc

12/16

- Higgs self coupling via κ_V , κ_{λ} , κ_{2V} Eur. Phys. J. C 83 (2023) 519
- Unique in VHH! 0 VHH is sensitive to WWHH, ZZHH couplings separately compared to VBF!
 - 3 SRs: 4 b-tagged jets with (0L, 1L, 2L) of $Z \rightarrow \nu\nu$, $W \rightarrow \ell\nu$, $Z \rightarrow \ell\ell$

Search for non-resonant VHH: Results

13/16 Daariimaa Ba

erc

Daariimaa Battulga o.b.o ATLAS Collaboration

HH in ATLAS

Di-Higgs combination with full Run 2 data

erc

HL-LHC prospects for the HH measurement

Non-resonant HH production of λ_{HHH} at the $\mathcal{L} = 3ab^{-1}, \sqrt{s} = 14 \text{ TeV}$

- 20x more data at High-Lumi LHC
 - \rightarrow High pile-up environment \Rightarrow detector upgrade
- Extrapolations of Run 2 Higgs self coupling measurements from $b\bar{b}b\bar{b}$, $b\bar{b}\tau\tau$, $b\bar{b}\gamma\gamma$
- ☆ Predicted Higgs self coupling constraint @ 68% CL:
 - $0.5 < \kappa_{\lambda} < 1.6$ ^{IFF} Large improvement from analysis
 - $0.7 < \kappa_{2V} < 1.4$ techniques: b-tagging, τ -identification compared to previous projections!

ATL-PHYS-PUB-2022-053

HH in ATLAS

15/16

erc 🛞

16/16

Conclusions

HH search and trilinear coupling of Higgs boson measurements in ATLAS:

- Measures many possible decay channels of the HH
- No observation of HH process with Run 2 datasets
- Most stringent coupling constraint up-to-date $\kappa_{\lambda} \in [-0.4, 6.3]$ by combining three most sensitive decay channels of $4b, bb\gamma\gamma, bb\tau\tau$
 - New interpretation of SMEFT using 4b channels
 - New HH results in VHH probing κ_{2W} & κ_{2Z}!

Thank you!

Higgs self-coupling measurement at LHC

Daariimaa Battulga o.b.o ATLAS Collaboration

erc

3/21

HH in ATLAS

 $HH \rightarrow b\bar{b}b\bar{b}$ via ggF & VBF

CERN-EP-2022-235 (2023)

- Trigger selection: 2b2j + 2b1j, p_{j1(j3)} > 170(70) GeV
- Suffer from large QCD multijet $\sim 90\%$ and fully hadronic $t\bar{t} \sim 10\%$ events

HH in ATLAS

Daariimaa Battulga o.b.o ATLAS Collaboration

Data/Pred

Events /

600

400

200

ooF Signal Region

Длнн < 0.5, Xнн > 0.95

Non-resonant $HH \rightarrow b\bar{b}b\bar{b}$

- $HH
 ightarrow b ar{b} b ar{b}$ (highest BR \sim 33%) via ggF & VBF
 - SR, CR defined in the 2D mass plane of H-candidates
 - Data-driven background estimation for multijet using neural network

CERN-EP-2022-235 (2023)

 \hookrightarrow NN trained in CR to reweight 2*b* data to 4*b* region

ggF	VBF
1. $\log(p_{\rm T})$ of the 2 nd leading Higgs boson candidate jet	1. Maximum dijet mass from the possible pairings of the four Higgs boson candi-
2. $\log(p_{\rm T})$ of the 4 th leading Higgs boson candidate jet	date jets 2. Minimum dijet mass from the possible
3. $log(\Delta R)$ between the closest two Higgs boson candidate jets	pairings of the four Higgs boson candi- date jets
4. $log(\Delta R)$ between the other two Higgs boson candidate jets	3. Energy of the leading Higgs boson can- didate
5. Average absolute η value of the Higgs boson candidate jets	4. Energy of the subleading Higgs boson candidate
6. $\log(p_{\rm T})$ of the di-Higgs system	5. Second-smallest ΔR between the jets
7. ΔR between the two Higgs boson candi-	in the leading Higgs boson candidate
dates	(from the three possible pairings for the
8. $\Delta \phi$ between jets in the leading Higgs	leading Higgs candidate)
boson candidate	6. Average absolute η value of the four
9. $\Delta \phi$ between jets in the subleading Higgs	Higgs boson candidate jets
boson candidate	7. $\log(X_{Wt})$
10. $\log(X_{Wt})$	8. Trigger class index as one-hot encoder
11. Number of jets in the event	9. Year index as one-hot encoder (for years
12. Trigger class index as one-hot encoder	inclusive training)

12. Trigger class index as one-hot encoder

Non-resonant $HH ightarrow bar{b}bar{b}$ NN reweighting

9/21

Daariimaa Battulga o.b.o ATLAS Collaboration

HH in ATLAS

Non-resonant $HH \rightarrow b\bar{b}b\bar{b}$ Results

erc

10/21

	Observed Limit	-2σ	-1σ	Expected Limit	+1 σ	+ 2σ
$\mu_{ m ggF}$	5.5	4.4	5.9	8.2	12.4	19.6
$\mu_{ m VBF}$	130	70	100	130	190	280
$\mu_{\rm ggF+VBF}$	5.4	4.3	5.8	8.1	12.2	19.1

Daariimaa	Battulga	o.b.o	ATLAS	Collaboratior

HH in ATLAS

SMEFT interpretation in $HH \rightarrow bbbb$

SM Effective Field Theory (SMEFT)

erc

11/21

- Linearly: $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_k c_k^{(6)} O_k^{(6)} + \frac{1}{\Lambda^4} \sum_k c_k^{(8)} O_k^{(8)} + \cdots$
- $O_{\nu}^{(6)}$ higher dimensional local operators in the Warsaw basis \Rightarrow provides set of operators allowed by SM gauge symmetries
- $c_k^{(6)}$ Wilson coefficients are free parameters; & they are correlated
- SMEFT constraints include linear $\frac{1}{\Lambda_2}$ (interference between SM & new physics), and quadratic term $\frac{1}{\Lambda_4}$ which is pure new physics; (Λ is fixed at 1 TeV)

arXiv:2301.03212 (2023)	1	G 0.15 ATLAS	Observed Limit (95% CL)
Wilson Coefficient	Operator	$\begin{array}{c} & s = 13 \text{ IeV}, \text{ 120 Id} \\ & c_{H\Box} = 0.0, c_{IG} = 0.0, c_{IH} = 0.0 \\ \hline \end{array}$	Expected Limit ±1σ Expected Limit ±2σ
c_H	$(H^{\dagger}H)^3$	0.05	
$c_{H\square}$	$(H^{T}H)\Box(H^{T}H)$	0.00	
c_{tH}	(H'H)(QHt)	-0.05	
c_{HG}	$H^{\dagger}HG^{I}_{\mu\nu}G^{\mu\nu}_{A}$	-0.10	
c_{tG}	$(Q\sigma' I t)HG_{\mu\nu}$	-40 -30 -20 -10	D 0 10 20 30 CH
1/21 Daariimaa	a Battulga o.b.o ATLAS	S Collaboration	HH in ATLAS

SMEFT interpretation in $HH \rightarrow b \bar{b} b \bar{b}$

erc

Non-linear Higgs Effective Field Theory (HEFT)

• No correlation between free parameters

Benchmark Model	c_{HHH}	c_{ttH}	c_{ggH}	c_{ggHH}	c_{ttHH}
SM	1	1	0	0	0
BM1	3.94	0.94	1/2	1/3	-1/3
BM2	6.84	0.61	0.0	-1/3	1/3
BM3	2.21	1.05	1/2	1/2	-1/3
BM4	2.79	0.61	-1/2	1/6	1/3
BM5	3.95	1.17	1/6	-1/2	-1/3
BM6	5.68	0.83	-1/2	1/3	1/3
BM7	-0.10	0.94	1/6	-1/6	1

HEFT interpretation in $HH ightarrow bar{b}bar{b}$

14/21

erc

To separate the signal from the background:

CERN-EP-2022-109 (2022)

- 3 SRs Single lepton trigger (SLT) & Lepton- τ trigger (LTT) for $\tau_{lep}\tau_{had}$ Single- and di- τ triggers for $\tau_{had}\tau_{had}$
 - BDT for $\tau_{had} \tau_{had}$, NN for $\tau_{lep} \tau_{had}$
 - High ranked input variables for trainings: m_{HH} , $m_{\tau\tau}^{MMC}$, m_{bb}
 - MVA discriminants are used to extract possible signals

$HH \rightarrow b\bar{b}\gamma\gamma$ (BR ~ 0.26%) via ggF + VBF

Phys. Rev. D 106, 052001 (2022)

HH in ATLAS

- Requiring 2 photons & 2 b-tagged jets; $m_{\gamma\gamma} \in [105, 160]$ GeV
- Signal region is subdivided low & high mass, targeting $\kappa_{\lambda} = 10$ or $\kappa_{\lambda} = 1$
- **Main backgrounds:** $\gamma\gamma$ + jets with data-driven and single Higgs with MC based background estimation via analytical functional forms

Non-resonant $HH \rightarrow b\bar{b}\gamma\gamma$

To separate the signal and background:

- BDT training used with inputs: *m*_{bb}
- Signal region is subdivided low & high mass in tight & loose BDT scores

Non-resonant $HH \rightarrow b\bar{b}\gamma\gamma$ Results

erc

18/21

- Observed limit on cross section:
 - $\sigma_{HH} \simeq 4.2 \times \text{SM}$
- Higgs self coupling constraint @ 95% CL:

•
$$-1.5 < \kappa_{\lambda} < 6.7$$

Daariimaa Battulga o.b.o ATLAS Collaboration

Phys. Rev. D 106, 052001 (2022)

HH in ATLAS

Non-resonant HH production of λ_{HHH} at the $\mathcal{L} = 3ab^{-1}, \sqrt{s} = 14 \text{ TeV}$

• 20x more data at High-Lumi LHC

ATL-PHYS-PUB-2022-053

- \hookrightarrow High pile-up environment \Rightarrow detector upgrade
- Extrapolations of Run 2 Higgs self coupling measurements from $b\bar{b}b\bar{b}$, $b\bar{b}\tau\tau$, $b\bar{b}\gamma\gamma$

Systematic uncertainties	Scale factors for HL-LHC baseline scenario
Theoretical uncertainty	0.5
b-jet tagging efficiency	0.5
c-jet tagging efficiency	0.5
Light-jet tagging efficiency	1.0
Jet energy scale and resolution	1.0
Luminosity	0.6
Background bootstrap uncertainty	0.5
Background shape uncertainty	1.0

Baseline scenario: 3.4σ predicted evidence of HH at HL LHC!

erc 🛞

HL-LHC prospects for the HH measurement

Non-resonant HH production of λ_{HHH} at the $\mathcal{L} = 3ab^{-1}, \sqrt{s} = 14 \text{ TeV}$

- Extrapolations of Run 2 Higgs self coupling measurements from $b\bar{b}b\bar{b}$, $b\bar{b}\tau\tau$, $b\bar{b}\gamma\gamma$
- Predicted Higgs self coupling constraint @68% CL:
 - $0.5 < \kappa_{\lambda} < 1.6$

ATL-PHYS-PUB-2022-053

