

Searches for Strong Production of Supersymmetric Particles

Egor Antipov

Stony Brook University, New York

on behalf of the ATLAS collaboration

XII International Conference on New Frontiers in Physics

July 11, 2023

Outline

*

- Supersymmetry general concept.
- Strong production of supersymmetric particles at LHC.
- Analyses:
 - Gluino pair production with large E_T^{miss} , 3 or more *b*-jets in the final state: <u>arXiv:2211.08028</u>
 - Gluino pair production with large E_T^{miss} , photons, jets in the final state: arXiv:2206.06012
 - Gluino or squark pair production with two same sign or three leptons in the final state: <u>arXiv:2307.01094</u>
- Summary.

Supersymmetry

- **Supersymmetry (SUSY)** is a promising extension to the Standard Model (SM):
 - Introduces new fermionic/bosonic partners to each of the SM bosons/fermions.
 - The Minimal Supersymmetric Standard Model (MSSM) is an extension to the SM that realizes SUSY with the minimum number of new particle states and interactions.
 - A natural solution for the hierarchy problem.
 - Unification of the electromagnetic, weak and strong forces.
 - In *R*-parity $P_R = (-1)^{3(B-L)+2s}$ conserved models (RPC), the lightest supersymmetric particle (LSP) is stable; **LSP is** a perfect candidate for **the Dark matter.**
- No evidence of SUSY in searches at ATLAS and other experiments so far.

July 11, 2023

Strong Production of SUSY Particles at LHC

- In Run-2, LHC delivered pp collisions at $\sqrt{s} = 13$ TeV.
- After the standard data quality selection, <u>ATLAS selected</u> 140 fb⁻¹ of data for physics analyses.
- Searches are based on prediction cross-section.
- Many SUSY searches at ATLAS:
 - With E_T^{miss} and additional objects in the final states.
 - Various channels, RPC and RPV.

Common BSM Analysis Strategy

- General strategy for any beyond the standard model (BSM) searches:
 - Maximize BSM signal significance.
- Signal region (SR):
 - Enrich with SUSY events and minimize background contamination.
- Control region (CR):
 - Maximize background event yields and minimize SUSY contamination.
 - Keep kinematically close to SR.
 - Use to derive MC background normalization factors.
- Validation region (VR):
 - Validate MC prediction with normalization factors before applying them in the SR.
- Statistical interpretation:
 - If no significant excess of data over the SM prediction is observed in the SR, run a combined fit over CR+SR to set exclusion limit at 95% CL.

Observable 1

Search for supersymmetry in final states with missing transverse momentum and three or more *b*-jets in 139 fb^{-1} of proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

arXiv:2211.08028

Multi b-jets: Analysis Setup

- Interpretations are provided in context of several models:
 - $\tilde{g}\bar{t}t$ and $\tilde{g}\bar{b}b$ models with 100% branching ratios in corresponding channel (left).
 - $\tilde{g}tb$ models with variable gluino branching ratio (right).
 - All models feature large E_T^{miss} and multiple jets with at least 3 *b*-tagged in the finals state.

- Analysis strategy:
 - Using two event selection approaches: cut-and-count (CCA) and neural network (NN).
 - In two channels: with exactly zero (OL) and at least one (1L) signal leptons in the final state.
- Background estimate:
 - From MC: $t\bar{t}$, single top, $t\bar{t} + X$, W + jets, diboson, Z + jets.
 - Kinematic reweighing (reshaping) for all MC processes is derived.
 - Normalization factors extracted from CRs for $t\bar{t}$ in all regions and Z + jets in $\tilde{g}\bar{b}b$ NN.
 - Multi-jet : data-driven method.

Multi *b*-jets: Background Kinematic Reweighing

- The 1L channel (right) suffers from p_T -related distributions mismodeling, while no such issue in the OL channel (left) was observed.
- Kinematic reweighing with respect to $m_{eff} = \sum_{i \le n} p_T^{jet_i} + \sum_{j \le m} p_T^{lep_j} + E_T^{miss}$ was derived.
- The new weights correct modeling of m_{eff} and its components independently in the 1L channel.
- Kinematic reweighing only affect shape and does not renormalize MC predictions.

Multi *b*-jets: Fit Regions

- Pull plots for CCA (top row) and NN (bottom row) analyses.
- $t\bar{t}/Z + jets$ MC normalization factors are derived in CRs and validated in VRs.
 - Renormalized MC describes data well in all VRs.
- No significant excess of data over the SM prediction is observed in any of the SRs of the analysis.
- Exclusion limits and model independent upper limits are derived.

July 11, 2023

ICNFP - Strong SUSY Searches at ATLAS

arXiv:2211.08028

9

Multi *b*-jets: $\tilde{g}\bar{t}t$ and $\tilde{g}\bar{b}b$ Interpretations

- Exclusion limits derived for NN and CCA analyses independently; the NN exclusion limits are stronger for both $\tilde{g}\bar{t}t$ and $\tilde{g}\bar{b}b$.
- Excluded gluinos with masses below 2.44 TeV and 2.35 TeV at 95% CL for massless neutralinos in $\tilde{g}\bar{t}t$ (left) and $\tilde{g}\bar{b}b$ (right) models.
- The strongest neutralino exclusion limits:
 - $\tilde{g}\bar{t}t$: **1**. **35 TeV** at $m_{\tilde{g}} = 2.20$ TeV
 - $\tilde{g}\bar{b}b$: **1**. **65 TeV** at $m_{\tilde{g}} = 2.10$ TeV

arXiv:2211.08028

Model-independent upper limits in each SR of the analysis

	Signal Region	$p_0\left(Z ight)$	$\sigma_{ m vis}^{95}$ [fb]	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$
	SR-Gtt-0L-B	0.03 (1.82)	0.05	6.4	$3.7^{+1.2}_{-0.4}$
	SR-Gtt-0L-M1	0.13 (1.13)	0.04	6.1	$4.3^{+1.6}_{-1.0}$
	SR-Gtt-0L-M2	0.18 (0.91)	0.06	7.7	$5.7^{+2.2}_{-1.2}$
	SR-Gtt-0L-C	0.03 (1.83)	0.06	8.5	$4.9^{+2.0}_{-1.0}$
•	SR-Gtt-1L-B	0.29 (0.56)	0.03	3.9	$3.3^{+1.2}_{-0.2}$
	SR-Gtt-1L-M1	0.5 (0.0)	0.02	3.0	$3.1^{+1.2}_{-0.1}$
	SR-Gtt-1L-M2	0.5 (0.0)	0.02	2.9	$3.4^{+1.3}_{-0.4}$
	SR-Gtt-1L-C	0.5 (0.0)	0.03	4.6	$5.3^{+2.2}_{-1.5}$
	SR-Gbb-B	0.11 (1.22)	0.07	9.5	$6.2^{+2.6}_{-1.4}$
	SR-Gbb-M	0.18 (0.93)	0.11	16.0	$11.4^{+5.0}_{-2.7}$
	SR-Gbb-C	0.5 (0.0)	0.14	19.4	$19.5^{+5.5}_{-4.6}$
	SR-Gtb-B	0.01 (2.30)	0.08	11.3	$5.4^{+2.2}_{-1.3}$
	SR-Gtb-M	0.5 (0.0)	0.03	3.7	$3.8^{+1.5}_{-0.5}$
	SR-Gtb-C	0.5 (0.0)	0.04	5.7	$6.7^{+2.6}_{-1.8}$
	SR-Gtt-2100-1	0.5 (0.0)	0.02	3.0	$3.1^{+1.1}_{-0.2}$
	SR-Gtt-1800-1	0.5 (0.0)	0.02	3.0	$3.0^{+1.1}_{-0.1}$
	SR-Gtt-2300-1200	0.40 (0.26)	0.03	3.8	$3.5^{+1.4}_{-0.3}$
	SK-GTT-1900-1400	0.5 (0.0)	0.03	4.2	$4.1^{-1.1}_{-1.1}$
	SR-Gbb-2800-1400	0.5 (0.0)	0.03	3.7	$3.9^{+1.4}_{-0.8}$
	SR-Gbb-2300-1000	0.5 (0.0)	0.03	3.8	$3.8^{+1.3}_{-0.7}$
	SR-Gbb-2100-1600	0.36 (0.35)	0.02	3.0	$3.2^{+1.3}_{-0.1}$
	SK-Gbb-2000-1800	0.29 (0.55)	0.03	4.0	$3.4_{-0.6}$

Multi *b*-jets: $\tilde{g}tb$ Interpretations

- $\tilde{g}tb$ exclusion limits are presented as a function of branching ratios for $\mathcal{B}(\tilde{g} \to b\bar{b}\tilde{\chi}_1^0)$ (vertical) and $\mathcal{B}(\tilde{g} \to t\bar{t}\tilde{\chi}_1^0)$ (horizontal) for expected (left) and observed (right).
- Results for $m(\tilde{\chi}_1^0) = 1$ GeV, 600 GeV and 1000 GeV are derived.
- The exclusion limits are the strongest when either of two $\mathcal{B}(\tilde{g} \to b\bar{b}\tilde{\chi}_1^0)$ and $\mathcal{B}(\tilde{g} \to t\bar{t}\tilde{\chi}_1^0)$ saturate the total sum, and weaker when the two $\mathcal{B}s$ are mixed.
- Expected and observed exclusion limits for $m(\tilde{\chi}_1^0) = 1 \text{ GeV}$:

Search for new phenomena in final states with photons, jets and missing transverse momentum in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

arXiv:2206.06012

July 11, 2023

Gravitino: Analysis Setup

- **Two models** with escaping gravitinos \tilde{G} are considered:
 - With the γ/Z or γ/h boson in the final state.
 - Both featuring large E_T^{miss} , and multiple jets in the final states.
- Background estimate:
 - $t\bar{t}\gamma$, $W\gamma$, QCD γ + *jets* (fake large E_T^{miss}): from MC with normalization factors extracted from CRs.
 - $W\gamma\gamma/Z\gamma\gamma/Z\gamma/\gamma\gamma$ directly from MC.
 - Misidentified jets or electrons as photons data driven method.

(b) γ/h model

Gravitino: Results

- No excess of data over the SM prediction in any of the SRs of the analysis is observed.
- Exclusion limits for both models with the γ/Z (top figure) or γ/h (bottom figure) are derived:
 - The strongest limit on $m_{\widetilde{g}} = 2.4$ TeV corresponding to $m(\widetilde{\chi}_1^0) = 1.3 1.4$ TeV for both models.
 - Due to low signal acceptance in $m(\tilde{\chi}_1^0) < 150 \text{ GeV}$ and $m(\tilde{\chi}_1^0) = 2050 - 2100 \text{ GeV}$, the limits on $m_{\tilde{g}}$ in the regions are softer.

- $S_{\rm obs}^{95}$ $S_{\rm exp}^{95}$ Signal Region $\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb] $\langle \epsilon \sigma \rangle_{\rm exp}^{95}$ [fb] $p_0(Z)$ $0.034^{+0.016}_{-0.009}$ $4.7^{+2.2}_{-1.2}$ 4.7 SRL 0.034 0.50 (0.00) $4.6^{+1.8}_{-1.1}$ $0.033^{+0.013}$ SRM 0.022 3 0.50(0.00)-0.008 $4.8^{+1.9}_{-1.4}$ $0.035^{+0.014}$ SRH 0.054 7.6 0.09(1.32)-0.010
- L, M, H = Low, Medium, High mass splitting regions

Model independent upper limits:

arXiv:2206.06012

ICNFP - Strong SUSY Searches at ATLAS

m_ã [GeV]

Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

arXiv:2307.01094

SS/3Lep: Analysis Setup

- Several signal models are studies:
 - Gluino (a,c,e,f) or squark (b,d) pair productions.
 - SUSY fermions cascade decays (a, b).
 - SUSY fermions cascade decay with intermediate sleptons (c,d).
 - RPV models with non-zero couplings to the SM leptons and quarks (e,f).
 - Final states vary depending on the channel, common feature: 2 (SS) or \geq 3 (any) leptons.

- Background estimate:
 - WZ + jets : from MC with normalization factors extracted from CRs.
 - Directly form MC: $t\bar{t} + V$, $t\bar{t}t\bar{t}$, WW/ZZ/VVV, $t\bar{t} + X$, single top +X, tW.
 - Events with electrons with incorrect charge data driven method.
 - Events with fake and non-prompt leptons using matrix method.

SS/3Lep: SRs Fit and Upper Limits

- No significant excess of data over the SM prediction is observed in any of the analysis SRs.
- Exclusion limits for each model as well and independent upper limits for each SR are derived.

arXiv:2307.01094

Signal regions pulls

Model independent upper limits

(L, M, H = Low, Medium, High mass splitting regions) Events 20 18 16 ATLAS Data Total uncertaint Charge-flip SR $S_{\rm obs}^{95}$ $S_{\rm exp}^{95}$ CL_{b} $\sigma_{\rm vis}[{\rm fb}]$ p(s = 0)(Z)√s = 13 TeV, 139 fb⁻¹ Fake/non-promp wz tťZ tłw ttti Others Post-fit WW. ZZ. VVV SRGGWZ-L 0.06 $5.2^{+2.2}$ 0.91 8.1 0.05(1.64)SRGGWZ-M 0.03 4.5 0.32 0.50 (0.00) SRGGWZ-H 0.03 3.9 0.23 0.50 (0.00) SRSSWZ-L 0.04 5.7 0.41 0.50(0.00)SRSSWZ-ML 0.07 10.4 0.94 0.02(2.04)Significance SRSSWZ-MH 0.06 8.6 0.93 0.04(1.74)SRSSWZ-H 0.06 8.6 0.91 0.09(1.32)SRGGSlep-L 4.0 $4.7^{+2.0}$ 0.33 0.50(0.00)0.03 SRGGWZ-M SRLQD SRSSSIep-H SRGGWZ-L SRGGWZ-H SRSSWZ-L SRSSWZ-ML **HM-ZWSSRS H-ZMSSHS** SRGGSlep-L SRGGSlep-M SRGGSlep-H SRSSSIep-L SRSSSlep-ML SRSSSIep-MH SRSSSIep-H (loose) SRUDD-1b SRUDD-2b SRUDD-ge2b SRUDD-ge3b SRGGSlep-M 0.04 6.2 0.60 0.43 (0.17) SRGGSlep-H 2.9 0.02 0.00 0.35 (0.39) SRSSSlep-L 0.08 11.7 0.99 0.01(2.33)SRSSSlep-ML 0.03 0.43 0.50(0.00)4.8 SRSSSlep-MH 0.06 7.9 0.85 0.15 (1.06) SRSSSlep-H 0.02 2.9 0.04 3.5 0.36 (0.35) 9.9 SRSSSlep-H (loose) 0.07 8.1+3 0.70 0.32 (0.46) Fermions Fermions cascade RPV 7.3 5.3^{+2} SRLQD 0.05 0.82 0.21 (0.81) cascade decays with SRUDD-1b 0.05 6.6 0.77 0.21 (0.80) 5.1 intermediate decays SRUDD-2b 0.26 (0.66) 0.05 6.4 0.69 SRUDD-ge2b 0.04 5.8 0.44 0.50 (0.00) leptons SRUDD-ge3b 0.05 6.8 6.1^{+2} 0.62 0.40 (0.24)

SS/3Lep: Exclusion Limits

- The strongest exclusion limits are:
 - (left) For gluino and the LSP corresponding to a point:

•
$$m_{\widetilde{g}}pprox 2$$
. 2 TeV , $m(\widetilde{\chi}^0_1)=2$. 0 TeV

- (center) For squark is $m_{\widetilde{q}} = 1.7$ TeV corresponding to a massless LSP.
- (right) For stop quark is $m_{\tilde{t}} = 1.4$ TeV corresponding to $m_{\tilde{g}} \approx 1700$ GeV.
- Right bottom: $\tilde{g} \rightarrow qq'WZ\tilde{\chi}_1^0$ channel of the analysis made significant improvement compared to previous result with the same 139 fb^{-1} dataset.

 $m(\widetilde{\chi}_1^0)$ [GeV]

arXiv:2307.01094

Summary

*

- SUSY searches at ATLAS cover many models:
 - Different productions with varieties of final states.
 - RPV, RPC, long lived particles.
 - Many Run2 results are <u>available</u>.
- Presented recent results for strong production.
- No evidence of SUSY in nature has been found yet. ATLAS interprets the results as:
 - exclusion limits on SUSY particles' masses,
 - and **model-independent upper limits** for particular signal regions.
- More studies to come with the Run3 data!

Backup

July 11, 2023

ICNFP - Strong SUSY Searches at ATLAS

20

Multi *b*-jets: Background Kinematic Reweighing

- The 1L channel (right) suffers from p_T -related distributions mismodeling, while no such issue in the OL channel (left) was observed.
- Kinematic reweighing with respect to $m_{eff} = \sum_{i \le n} p_T^{jet_i} + \sum_{j \le m} p_T^{lep_j} + E_T^{miss}$ was derived.
- The new weights correct modeling of m_{eff} and its components independently in the 1L channel.
- Kinematic reweighing only affect shape and does not renormalize MC predictions.

Multi b-jets: NN Analysis Event Selection

- Keras tensorflow. Parametrized: knows signal mass point and discrimination between background Gtt or Gbb.
- NN returns probability for an event to be signal (P(Gtt)or P(Gbb)), a $t\bar{t}$ background event $P(t\bar{t})$, or a Z + jets background event P(Z).
- To reduce the large number of potential SRs, a <u>set-cover algorithm</u> was used to iteratively select the SR which excludes the most as-yet non-excluded model points until all such points are exhausted

arXiv:2211.08028

ICNFP - Strong SUSY Searches at ATLAS

July 11, 2023

Gravitino: Signal Acceptance Plots

arXiv:2307.01094

July 11, 2023

SS/3Lep : Exclusion Limits – SUSY Cascade Decay

SS/3Lep: Exclusion Limits – SUSY Cascade with Lep

SS/3Lep: Exclusion Limits RPV

