Searches for BSM resonances in ATLAS

10th -23th July 2023 Kolymbary Crete

M.Verducci University and INFN of Pisa

Outline

The Standard Model (SM) is currently the best description of the subatomic world, but it does not explain the complete picture! Several BSM models have been introduced to explain the open questions, introducing new heavy particle resonances!

- Many public ATLAS papers and conference notes are available in <u>ATLAS public results</u>.
- Highlight more recent ATLAS searches for BSM resonances:
 - New Resonance $Y \rightarrow XH \rightarrow qqbb$ [2306.03637]
 - Heavy Higgs in multilepton and b-jets [ATLAS-CONF-2022-039]
 - Vector-like Top (VLT) partners [ATLAS-CONF-2023-020]
 - New Resonance R \rightarrow W⁺W⁻ \rightarrow evµv [ATLAS-CONF-2022-066]

New Resonance $Y \rightarrow XH \rightarrow qqbb$

New heavy resonances Y decaying into a Standard Model Higgs boson H and a new boson X.

- Final states defined by a Higgs decays in to bb and the X to light quark resulting in a fully hadronic final state.
- Heavy Vector Triplet HVT model used as benchmark for cross section upper limits

Background estimation is fully data driven from regions which fail H tagging Composition:

- ~97% QCD di-jet processes,
- ~3% *tt* and V+jets processes

Y Resonance Analysis Strategy

- The high mass of the Y results in both the H and the X are boosted.
- Three Signal Regions SR:

- SR (Merged): X and H are reconstructed as a large radius jet.
- SR (Resolved): an orthogonal resolved region where the X is reconstructed as two small radius jets.
- SR (Anomaly): Additional anomaly detection, which selects the X particle based solely on its substructural incompatibility with background iets (not orthogonal to the other SRs).

					-		
		Parameter		Presele	ection requ	uirements	
		m_{JJ} [GeV]			> 1300)	
		$p_{\mathrm{T}}(J_1)$ [GeV]			> 500)	
		m_J [GeV]		m_{J_1}	> 50 m	$J_2 > 50$	
Neutral		$D_{H_{bb}}$			> -2		
				5	Signal regi	ons	
Network	\langle		Merg	ged	Resc	olved	Anomaly
		m_H [GeV]			(75, 145)	
ININ tagger		$\blacktriangleright D_{H_{bb}}$			> 2.44		
		D_2^{trk}	< 1	.2	>	1.2	-
	\ \	$ \Delta y_{j_1,j_2} $	-		< 2	2.5	-
		p_{T}^{bal}	-		< (0.8	-
		Anomaly Score (S_A)	-		-		> 0.5
				Backgrou	nd estima	tion regio	ns
			CR0	HSB0	HSB1	LSB0	LSB1
		m_H [GeV]	(75, 145)	(145,	200)	(6	55, 75)
		$D_{H_{bb}}$	< 2.44	< 2.44	> 2.44	< 2.44	> 2.44
						ica ver	UUCCI- UII

Results on Y→ XH→qqbb

No significant excess of data over the expected background is observed.

The observed limits range for the cross section from 0.34 fb for the signal point ($m_Y = 5000 \text{ GeV}$, $m_X = 600 \text{ GeV}$) to 1.22 pb for the signal point ($m_Y = 2500 \text{ GeV}$, $m_X = 2000 \text{ GeV}$).

Section [pb]

Cross

95% CL Limit on

10

10⁰

10

10⁻²

10-3

trim

tag

ATLAS

√s = 13 TeV, 139 fb⁻¹

Anomaly SR Uncertainty

Two-Prong (Merged) SR

Two-Prong (Resolved) SR

Injected Signal

Heavy Higgs in multilepton and b-jets

- New heavy scalars with flavour-violating decays in final states with multiple leptons and b-tagged.
- Two benchmark models:
 - Two-Higgs-doublet-model (g2HDM) involving an additional scalar with couplings to top quark and the three up-type quarks (ρ_{tt} , ρ_{tc} , and ρ_{tu}).
 - R-parity violating supersymmetry.
- Target signal:
 - final states with either a same-sign top-quark pair, three top-quarks, or four top-quarks.

Event Categories

- Events are categorised depending on:
 - the multiplicity of light charged leptons (electrons or muons),
 - total lepton charge,
 - and a deep-neural-network to enhance the purity of each of the signals.

Lepton category	2ℓSS	3ℓ	4ℓ
Lepton definition	$(T, T) \text{ with } \ge 1 \ b^{60\%} \parallel$ $(T, M) \text{ with } \ge 2 \ b^{77\%}$	(L, T, M) with $\geq 1 \ b^{60\%} \parallel$ (L, M, M) with $\geq 2 \ b^{77\%}$	(L, L, L, L)
Lepton $p_{\rm T}$ [GeV]	(20, 20)	(10, 20, 20)	(10, 10, 10, 10)
$m_{\ell^+\ell^-}^{OS-SF}$ [GeV]	_	>12	·
$ m_{\ell^+\ell^-}^{OS-SF} - m_Z $ [GeV]	_	>10	
N _{jets}		≥ 2	
N _{b-jets}	≥ 1	$b^{60\%} \parallel \geq 2 \ b^{77\%}$	
Region split	(sstt, ttq, ttt, tttq, tttt) × $(Q^{++}, Q^{})$	$(ttt, tttq, tttt) \times (Q^+, Q^-)$	_
Region naming	2ℓSS ++ CAT sstt	3ℓ ++ CAT ttt	4ℓ
	2ℓSS ++ CAT ttq	3ℓ ++ CAT tttq	
	$2\ell SS ++ CAT ttt$	3ℓ ++ CAT tttt	
	$2\ell SS$ ++ CAT tttq	3ℓ CAT ttt	
	$2\ell SS ++ CAT tttt$	3ℓ CAT tttq	
	2ℓSS CAT sstt	3ℓ CAT tttt	
	$2\ell SS CAT ttq$		
	$2\ell SS CAT ttt$		
	2ℓSS CAT tttq		
	$2\ell SS CAT tttt$		

Limits on g2HDM and SUSY models

• Masses of an additional scalar boson m_H between 200-630 (200-840) GeV with couplings ρ_{tt} = 0.4, ρ_{tc} =0.2, and ρ_{tu} =0.2 are observed (expected) to be excluded at 95% confidence level.

ATLAS Preliminary

10 = √s = 13 TeV, 139 fb⁻¹

SUSY

95% C.L. limits

Prediction

Observed limit

Expected limit ±1o

Expected limit ±20

[qd]

5×BR

10

 10^{-2}

Vector-like Top (VLT)

- A number of BSM models predict the existence of Vector-Like Quarks (VLQs), as singlets, doublets or triplets. VLQs usually couple to SM quarks predominantly with the third generation via an exchange of charged (W±) or neutral (Z, H) bosons
 - Single production of VLQs, unlike pair production, can have a larger cross-section at high masses and is dominated by electroweak processes.

• Search for the single production of vector-like top partners (T), with final state containing an opposite-charge pair of electrons or muons (forming a Z boson candidate) and a b-tagged / forward jets.

Post-Fit • Events are categorized into two 10²

- independently optimized analysis channels:
 - exactly two,

Event selection

of the Z.

- Main backgrounds: Z+jets, diboson, tt, tt + X
- at least three leptons.
 - Main backgrounds: diboson, tt + X.

• a single lepton trigger and OS-SF leptons

• Discriminating observable for both the categories is $p_T(ll)_7$

Event Selection for VLT

Results on VLT

- No significant excess over the predicted background is observed.
- 95% CL limits on excluded masses and coupling strengths κ for singlet and doublet representations are provided:
- singlet: **κ** < 0.22 (0.64) for m(T) ~ 1000 (1975) GeV
- doublet: **κ** < 0.54 (0.88) for m(T) \sim 1000 (1425) GeV.

Heavy resonances (R) in W⁺W⁻ \rightarrow evµv

- A search for neutral heavy resonances (R), decaying into two W bosons (WW \rightarrow evµv, either directly or through tau lepton), produced through either gluon-gluon fusion (ggF), quark-antiquark annihilation (qqA), or vector-boson fusion (VBF).
- The results have been compared to 5 different model predictions:

Scalar resonances:	Model	Resonance spin	Production r		mode
Higgs like narrow width			ggF	qqA	VBF
scalar (NWA),	NWA	Spin-0	х		Х
 Higgs boson in Georgi- Machacek model (GM), 	GM	Ĩ			х
bulk Randall-Sundrum model	Radion		Х		Х
Non-scalar resonances:	HVT	Spin-1		х	Х
 Heavy Vector Triplet (HVT), 	$RS G^*_{KK}$	Spin-2	х		х
Graviton.		-			

Production of a heavy neutral particle via VBF. Electron (green), muon (red), jet (yellow cone), large MET (dashed white) with one jet out of the detector acceptance.

Selection of R \rightarrow W+W- \rightarrow evµv

٠

•

/ bin

Events /

Data / Pred

10

10

10

- Events selection:
 - two different flavour, opposite-sign leptons with each $p_T > 25$ GeV.
 - One lepton must match the lepton that fires the trigger.
- Backgrounds:
 - top quarks (vetoed b-tagged jet),
 - non-resonant WW production. (MC simulation + reweighing for *tt*),
 - W/Z+jets ,multi-jets (data driven),
 - diboson, SM Higgs
- Discriminating variable is the transverse mass

$$m_T = \sqrt{(E_T^{\ell \ell} + E_T^{\text{miss}})^2 - |\vec{p}_T^{\ell \ell} + \vec{E}_T^{\text{miss}}|^2}$$

Monica Verducci- l

m_T [GeV]

m_T [GeV

Results on Heavy Resonance R

No significant excess is found in the mass range between 200 GeV and 6 TeV

Model	Obs. limit $[GeV]$	Exp. limit $[GeV]$
Radion, ggF	1090	1190
Kaluza-Klein graviton, ggF	1340	1340
Kaluza-Klein graviton, VBF	500	500
HVT scenario A, qqA	2100	1890
HVT scenario B, qqA	2350	2130

Conclusions

- ATLAS is searching for many final states which would arise from new BSM resonances: no evidence of new physics yet.
- The analyses performed on full Run2 data improved the previous lower/upper limits:
 - new analysis techniques are developed
 - explored new models
- Run 3 is ongoing!

^{*}Only a selection of the available mass limits on new states or phenomena is shown †Small-radius (large-radius) jets are denoted by the letter j (J).

New Resonance Y → XH→qqbb

Distributions of the J_H candidate D_{Hbb} score in data after preselection requirement. Requiring $D_{Hbb} > 2.44$ defines a working point that is 60% efficient for the selection of the boosted $H \rightarrow bb$ topology across the full p_T range.

$$D_{H_{bb}} = \ln \frac{P_{\text{Higgs}}}{f_{\text{top}} \cdot P_{\text{top}} + (1 - f_{\text{top}}) \cdot P_{\text{multijet}}}$$

NN weight

P_X = probability of being originated by top, Higgs or multileptons

New Resonance $Y \rightarrow XH \rightarrow qqbb$

Input consists solely of jets from data, no labeling scheme is used in training, distinguishing this method of unsupervised learning from traditional supervised machine learning, where the input is labeled in signal or background categories.

X-Tagging

• Sensitivity over the dominant multijet background is enhanced by additional machine-learning applications, namely a NN-based $H \rightarrow bb$ tagger and a DNN-based reweighting to ensure good modeling

The merged region is defined by applying a selection $D_{trk} < 1.2$, where D_{trk} is the same as D_2 but computed using only tracks associated with the jet.

Variable	DNN ^{cat}	DNN ^{SB}
Number of jets (N_{jets})	 ✓ 	1
Sum of pseudo-continuous b-tagging scores of jets		
Pseudo-continuous b-tagging score of 1st, 2nd, 3rd leading jet in $p_{\rm T}$	1	
Sum of $p_{\rm T}$ of the jets and leptons $(H_{T,jets}, H_{T,lep})$		
Angular distance of leptons (sum in the case of 3ℓ and 4ℓ)	1	
Missing transverse energy	1	
Leading transverse momentum of jet	-	
Invariant mass of leading lepton and missing transverse energy	-	
Di/tri/quad-lepton type variable (associated to the number of electrons/muons in event)	-	

 Selection Criteria for the different SR and CR, VR

VLT

	2ℓCR1	2ℓCR2	2ℓCR3	2ℓVR1	$2\ell VR2$	2ℓSR	
	1 pair of OS-SF leptons with $ m(\ell \ell) - m_Z < 10 \text{ GeV}$						
Dreselection		$p_{\rm T} (\ell \ell) > 200 \text{ GeV}, H_{\rm T} > 300 \text{ GeV}$					
Fieselection	$ \geq 1 \text{ vRC jet} H_{\text{T}} + E_{\text{T}}^{\text{miss}} < m_{\ell\ell J} $						
forward jets	≥ 1	0	0	≥ 1	0	≥ 1	
<i>b</i> -tagged jets	0	≥ 1	0	0	≥ 1	≥ 1	
top-tagged jets	-	-	≥ 1	≥ 1	≥ 1	≥ 1	
top-vetoed jets	≥ 1	≥ 1	-	-	-	-	

	3ℓVV	3ℓMixed	3ℓttX	3ℓVR	3ℓSR			
Preselection	\geq 3 leptons							
resciection		≥ 1 pair	of OS-SF leptons	10 GeV				
<i>b</i> -tagged jets	0	1	≥ 2	≥ 1	≥ 1			
forward jets	-	0	0	≥ 1	≥ 1			
A & solations	$\Lambda_{\Phi}(7, l_{\rm c}) < 26$	$\Lambda \phi(7 l_0) < 26$	$\Lambda \phi(7, l_{\rm c}) < 26$	$\Delta \phi(Z, \ell_3) < \frac{\pi}{2} \mathbf{OR}$	$\Delta \phi(Z, \ell_3) > \frac{\pi}{2}$ AND			
$\Delta \phi$ selections	-	$\Delta \psi(Z, \ell_3) \leq 2.0$	$\Delta \psi(Z, t_3) \leq 2.0$	$\Delta \phi(Z, b_{\text{lead}}) < \frac{\pi}{2}$	$\Delta \phi(Z, b_{\text{lead}}) > \frac{\pi}{2}$			
					$\max(p_{\rm T}(\ell)) > 200 \text{ GeV}$			
other selections			-	-	$p_{\rm T}(\ell\ell) > 300 { m GeV}$			
					$H_{\rm T} \cdot n({\rm jets}) < 6 { m TeV}$			

VLT

 $W^+W^- \rightarrow ev\mu v$

	Pre-Selection					
Two Different F	Two Different Flavour, Opposite Sign Leptons, $p_T^{\ell} > 25$ GeV					
Т	Third lepton veto, $p_T^{\ell} > 15$ GeV	7				
	Common Selection					
	$N_{b-\mathrm{tag}} = 0$					
	$ \Delta\eta_{\ell\ell} < 1.8$					
	$m_{\ell\ell} > 55 \mathrm{GeV}$					
	$p_T^{\ell,\text{lead}} > 45 \text{GeV}$					
	$p_T^{\ell, \text{sublead}} > 30 \text{GeV}$					
	$\max(m_T^W) > 50 \mathrm{GeV}$					
SC _{ggF}	SC _{VBF1J}	SC _{VBF2J}				
Inclusive in N_{jet} but excluding	$N_{\rm jet} = 1$ and $ \eta_j > 2.4$,	$N_{\rm jet} \ge 2$ and $m_{jj} > 500$ GeV,				
SC _{VBF1J} and SC _{VBF2J}	$\min(\Delta \eta_{j\ell}) > 1.75$	$ \Delta y_{jj} > 4$				
	Two Different F T SC ggF Inclusive in N_{jet} but excluding SC VBF1J and SC VBF2J	$\begin{array}{c c} & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$				

Pre-Selection						
Two	Two Different Flavour, Opposite Sign Leptons, $p_T^{\ell} > 25$ GeV					
	Third le	pton veto, $p_T^{\ell} > 15 \text{ GeV}$				
WW CR _{ggF}	Top CR _{ggF}	WW CR _{VBF1J}	Top CR _{VBF}			
$N_{b-\text{tag}} = 0$	$N_{b-\text{tag}} = 1$	$N_{b-\mathrm{tag}} = 0$	$N_{b-\mathrm{tag}} \ge 1$			
$ \Delta \eta_{\ell\ell} > 1.8$	$ \Delta \eta_{\ell\ell} < 1.8$	$(\Delta \eta_{\ell\ell} > 1.8 \text{ or})$	$ \Delta\eta_{\ell\ell} < 1.8$			
$m_{\ell\ell} > 55 \mathrm{G}$	ieV	$10 \text{ GeV} < m_{\ell\ell} < 55 \text{ GeV})$	$m_{\ell\ell} > 55 \text{ GeV}$			
$p_T^{\ell,\text{lead}} > 45$	GeV	_	$p_T^{\ell,\text{lead}} > 45 \text{ GeV}$			
$p_T^{\ell, \text{sublead}} > 30$) GeV	_	$p_T^{\ell, \text{sublead}} > 30 \text{ GeV}$			
$\max(m_T^W) > 5$	0 GeV	_	$\max(m_T^W) > 50 \text{ GeV}$			
METSigRatio > 0.8 GeV	-1 –		-			
Excluding VBF1/2J	phase space	VBF1J phase space	VBF1/2J phase space			

• Event Selection

Table 3: Summary of all the selections used in the ggF and VBF WW and top-quark control regions.

Systematics

ggF Production		VBF Production	
Systematic Source	Impact $(\%)$	Systematic Source	Impact $(\%)$
	$m_{H} = 3$	600 GeV	
Flavour tagging: <i>b</i> -jets	11	WW QCD Scale	14
WW QCD Scale	10	Wt Shower	12
JES: b -jets	9	Wt Matrix Element	10
Floating Normalizations: WW	8.77	JES: Pile-up μ Offset	7.97
Data stat. uncertainty	9	Data stat. uncertainty	16
Total Syst. uncertainty	33	Total Syst. uncertainty	40
	$m_{H} = 1$	$000 {\rm GeV}$	
WW Shower: Recoil	6	WW Scale	4
e fake factor stat. uncertainty	5	Wt Shower	3.4
Wt Interference	5	WW Shower: CKKW	3.4
WW QCD Scale	4	$t\bar{t}$ Final-state Rad.	2.9
Data stat. uncertainty	17	Data stat. uncertainty	25
Total Syst. uncertainty	20	Total Syst. uncertainty	10
	$m_{H} = 3$	$000 {\rm GeV}$	
WW Shower: Recoil	20	WW Scale: QSF	7
WW Scale: QSF	19	WW Shower: Recoil	6
WW Shower: CKKW	16	WW Shower: CKKW	5
Wt Interference	7	Floating Normalizations: WW	1
Data stat. uncertainty	22	Data stat. uncertainty	18
Total Syst. uncertainty	21	Total Syst. uncertainty	15

ATLAS

